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Abstract. We introduce a model for the spatial distribution of cell
phone antennas in the city of Buenos Aires (CABA). After showing that
the complete spatial randomness (homogeneous Poisson distribution) hy-
pothesis does not hold, we propose a model in which each point is dis-
tributed according to a bivariate Gaussian variable with mean given by
the barycenter of its neighbors in the Delaunay triangulation. We show
that this model is suitable, and can be used to generate a synthetic dis-
tribution of antennas. The generated distribution contains no sensitive
or proprietary information, and can thus be freely shared with research
groups, fostering further research on the subject.
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1 Introduction

The scientific analysis of mobile phone datasets, collected by operators within
their network, is a recent field of study, with a corpus of published works starting
in 2005, and a noticeable increase of publications from 2012 onwards [1]. Other
milestones of this increased interest of the scientific community are the NetMob
conferences, focused on mobile phone data analysis [2].

Mobile traffic contains information about the movement, interactions, and
mobile service consumption of individuals at unprecedented scales. This at-
tracted scientists from multiple disciplines: sociologists, epidemiologists, physi-
cists, transportation and telecommunication experts found in these datasets a
clear opportunity to bring their analyses to an unprecedented scale while retain-
ing a high level of detail on each individual.

Thanks to the growing availability of datasets, collaborations between aca-
demic research groups and network operators based on the analysis of real-world
mobile traffic have been flourishing (a significant example is the Data for Devel-
opment (D4D) Challenges by Orange [3]).

One of the main research subject is the mobility analysis. Call locations
(recorded through cell tower usages) are a projection of users trajectories, show-
ing a strong regularity in their movement patterns, both in space and time [4].
Human mobility is also influenced by social components [5, 6].
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An important problem of the data collection process is the preservation of
subscriber privacy. Mobile traffic data contains sensitive information on indi-
vidual subscribers, whose privacy needs to be properly protected [7]. There are
limitations to the current approaches to the anonymization of mobile traffic
datasets, as shown by [8].

One promising approach to avoid privacy issues is to generate synthetic traffic
datasets. Realistic traffic records that do not contain personal information of
subscriber can be freely distributed, and can be used by any research entity
needing to perform network simulations and analysis [9].

In this work, we tackle the problem of generating a synthetic distribution of
antennas, which can be used as a foundation for a synthetic mobile phone traffic
generator. This opens the possibility of sharing (synthetic) datasets, expanding
the access of researchers to the study of mobile phone networks.

Several articles deal with the complete spatial randomness hypothesis [10–13]
to model the distribution of antennas in cellular phone networks, mostly due to
its tractability. Although, it has been shown that this kind of point processes is
not suitable in realistic situations [14]. Typical alternatives suggest the use of
Matérn processes, determinantal processes, Poisson hard-core processes, Strauss
processes, and Perturbed triangular lattice models, but just some of them have
been contrasted with real data [14].

In this article we use real data to test the homogeneous as well as non-
homogeneous Poisson point process (PPP) hypothesis and we conclude that
none of them are realistic models for the locations of antennas. As a consequence
we propose a new model based on the Harmonic deformation of the Delaunay
triangulation of a PPP [15] and we contrast the model with real data. This model
turns out to be suitable.

2 Complete Spatial Randomness

The natural mathematical object to deal with in order to model the distribution
of antennas in a cellular network is a point process. A point process is a random
variable X:Ω → N that takes values in the space of locally finite configurations
(configurations of points in the plane with no accumulation points).

The first thing we would like to do when we face an instance of a point process
is to compare it with a benchmark or null model which exhibits complete spatial
randomness (CSR). By CSR we understand the fulfilment of two conditions:

• Stationarity: The distribution of the process is translation invariant, that is,
X and X + p have both the same distribution.
• Independent scattering: The number of points in each of k disjoint sets of

the domain form k independent random variables.

These two conditions guarantee the maximum degree of randomness a process
may have, in the sense of the null interaction between points and the homogeneity
along the domain, that is, the expected number of points occurring in a subset
S is the same as in S + p.
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It can be proved that if a point process verifies these two conditions then it
must be an homogeneous PPP, defined below.

Definition 1. Given a point process X and a subset S ⊂ R2, N(S) denotes the
number of points of X contained in S and µ(S) := E(N(S)) the intensity mea-
sure. We say that X is distributed according to a PPP of intensity ρ:R → R≥0
if the following properties are satisfied:

1. µ(S) =
∫
S
ρ(x) dx for any square S = [a, b]× [c, d].

2. For any square S with µ(S) < ∞, N(S) ∼ P(µ(S)). The number of points
in S is distributed according to a Poisson distribution with mean µ(S).

3. For any n and any square S with 0 < µ(S) < ∞, conditional on N(S) =
n, the n points within S are independent and each of them has density
ρ(·)/µ(S).

When ρ(x) ≡ ρ > 0 is a constant function we say that X is an homogeneous
Poisson point process.

The meaning of the Poisson distribution as distribution of the number of
points occurring in S can be realized intuitively as the result of a limit of a bino-
mial distributions. If a grid of thickness 1/n is drawn on R2, and to each square
Q of the grid a probability equal to its area is associated for the occurrence of a
point within it, then for a subset S consisting of several squares the distribution
of the count of points occurring inside S is binomial:

P (N(S) = k) =

(
#Q

k

)
.(n−2)k.(1− n−2)#Q−k

Then, as n → ∞, and the quotient #Q.n−2 → Area(S), by the Poisson limit
theorem, this binomial distribution tends to a Poisson distribution with mean
λ = #Q.n−2 = Area(S).

Fig. 1. Poisson point process realized as a limit of binomial random variables.

Remark 1. It must be noted that the CSR hypothesis holds if and only if ρ is a
constant since it is the only way in which

E(N(S + p)) = µ(S + p) = µ(S) for every S and p. (1)
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3 Nonparametric Estimation of Intensity Functions

In the case of a homogeneous Poisson process contained in a bounded set S,
there is a natural unbiased estimate of its intensity, which is in fact the maximum
likelihood estimate for a homogeneous Poisson process:

ρ̂ = N(S)/Area(S) (2)

The case of our cellular network is clearly different, since a greater concen-
tration of antennas is observed at least at the city centre. In the cases where
homogeneity is suspected not to hold, a non-parametric kernel estimate of the
intensity function should be used:

ρ̂(x) =
∑
ζ∈X

kb(x− ζ) (3)

Here kb represents a volume preserving scaling of a kernel function k (which
could be a multivariate Gaussian) such that∫

R2

k(x)dx = 1, k(x) ≥ 0 (4)

kb(x) = (1/b)nk(x/b). (5)

This estimate is usually sensitive to the choice of the bandwidth b, while the
choice of k is less important. We would like to choose the bandwidth b in order
to improve the estimation. Namely, the quantity

‖ρ− ρ̂b‖2 =

(∫
R2

(ρ(x)− ρ̂b(x))2dx

) 1
2

(6)

which measures the distance or dissimilarity between the real intensity ρ, which
has generated the data, and the estimate ρ̂b is to be minimized. A good choice
for b is the one that minimizes the following quantity:

L(ρ̂b) = ‖ρ̂b‖22 − 2

∫
R2

ρ(x)ρ̂b(x)dx. (7)

Since this last risk formula involves ρ, which is unknown, it can only be
estimated. In this case the estimator will be:

L̂(ρ̂b) =
1

|X|
∑
ζ∈X

[
‖ρ̂ζb‖

2
2 − 2ρ̂ζb(ζ)

]
(8)

where ρ̂ζb denotes the intensity estimator built from X − {ζ}.

This estimator is known as Left One Out Cross Validation (LOO) and it
is studied in detail by Celisse [16]. Although the author is not able to give
a closed formula for the variance and the bias of the estimator, these can be
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Fig. 2. Estimated risk L̂(ρ̂b) as function of b.

approximately calculated by bootstrapping. This approach, despite being more
correct, will not be followed in the present exposition, and instead we will settle
for simply choosing the b with less estimated risk.

Figure 2 displays a plot of estimated risk vs. b parameter, showing that the
estimated optimal value of b lies around 1.6 in the chosen scale units. Figure
3 displays three different bandwidth choices for the estimate of the intensity
around the city of Buenos Aires (CABA).

Fig. 3. Contour plots of intensity function ρ̂b in logaritmic scale.
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4 Simulation of Poisson Point Processes

By simulation of a point process, we understand the generation of an instance
of the process drawn from its distribution function. For the same process there
may exist various possible procedures or algorithms that simulate it.

The simplest case is the simulation of a homogeneous Poisson process in a
box. Let ρ be its intensity and [a, b]× [c, d] a box in R2. According to Section 2,
the number of point occurrences must be first drawn from a Poisson distribution
with mean ρ.(b−a).(d−c). Once the number n of occurrences is established, the
process is simply the result of putting together n independent draws from the
uniform distribution U([a, b]× [c, d]). The R code for carrying out these steps is:

n = rpois(1,lambda=rho*(b-a)*(d-c))

pois_sim = matrix(0,2,n)

for(i in seq(1,n)){

pois_sim[,i] = c(runif(1,a,b),runif(1,c,d))

}

The simulation of a non-homogeneous process is less simple. In order to do
this, the box is first partitioned into a grid of m × m rectangles, in each of
whom the intensity function is assumed to be approximately constant. Since
these rectangles are pairwise disjoint, they form m × m independent Poisson
processes, each of whom is simulated like the simple case handled above. The R
code for carrying on these steps is:

pois_sim = matrix(0,2,0)

for(i in seq(1,m)){

for(j in seq(1,m)){

n = rpois(1,lambda=rho((b-a)/m*(j-1), ~

(d-c)/m*(i-1))*(b-a)/m*(d-c)/m)

pois_sim_sub = matrix(0,2,n)

for(k in seq(1,n)){

pois_sim_sub[,k] = c(runif(1,(b-a)/m*(j-1),(b-a)/m*j), ~

runif(1,(d-c)/m*(i-1),(d-c)/m*i))

}

pois_sim = cbind(pois_sim,pois_sim_sub)

}

}

Last but not least, there exist a R library written by Adrian Baddeley called
spatstat intended to handle spatial point processes. This library contains a func-
tion which simulates non-homogeneous Poisson processes taking by argument its
intensity function and returning an object of type “ppp”. An R code example
of its use for generating a Poisson process with intensity ρ in [0, 1] × [0, 1] is
displayed below:

window = owin(c(0,1),c(0,1))

lmax = 100
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pois_sim_ppp = rpoispp(rho,lmax,window)

pois_sim = rbind(pois_sim_ppp$x,pois_sim_ppp$y)

5 Complete Spatial Randomness Testing

Testing the CSR hypothesis is an important part of the analysis of point pat-
terns. If the hypothesis is accepted, then it is not possible to find indicators of
interesting interaction between the points based on the geometry observed in the
pattern. This analysis provides also information on the direction of the deviation
from CSR, as well as its cause to suggest further analysis.

In our present case, we suspect at first hand that the process of antennas is not
CSR, because it has a clear non-homogeneity. Nevertheless, it is still necessary to
determine if the non-homogeneous Poisson hypothesis holds. In order to do this,
we proceed as follows. Under the Poisson hypothesis, if we apply an adequate
thinning transformation to the process, the resulting process should be Poisson
homogeneous, that is, CSR. Then we can apply a test for CSR, and if the test
rejects CSR for the transformed data, then it also rejects the Poisson hypothesis
for the original data.

Fig. 4. Distribution of cellphone antennas before and after homogenization.

A thinning transformation consists of a random drop of points of the process.
In the case of location-dependent thinning, a function p(x) with range [0, 1] is
defined, and each point x is dropped with probability 1 − p(x). The result of
applying a thinning operation to a Poisson process is also a Poisson process. If
the intensity of the original process is λ(x), the new intensity becomes λ(x).p(x).
So that if we apply p(x) = 1/λ(x), assuming λ(x) > 1 everywhere, the process
becomes homogeneous.
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Many statistics for testing CSR are available, one of the most important is
Ripley’s K function. For stationary isotropic processes the K function is defined
as:

K(t) = λ−1E[N0(t)] (9)

where N0(t) represents the total count of points of X at distance less than t
from the origin, which, disregarding edge effects, in the Poisson homogeneous
case should be the same as Np(t) for any p.

A first estimate that can be devised for this quantity is the following:

K̂(t) =
1

λn

∑
i

∑
j 6=i

I(rij < t) (10)

where I is the indicator function and rij is the distance between xi and xj .
However, this estimate is negatively biased because of edge-effects. For a point
within distance t of the boundary of S, the observed count of other points within
distance t necessarily excludes any events which may have occurred within dis-
tance t but outside S. Several estimates have been proposed to correct this bias,
the following is due to Ripley:

K̂(t) =
1

λn

∑
i

∑
j 6=i

I(rij < t)w−1ij (11)

where w(x, r) stands for the proportion of the disk D(x, r) contained in S, and
wij represents w(xi, rij).

Using the last estimate, the K function of our thinned process is compared
with the (theoretically calculated) expectation of a Poisson homogeneous pro-
cess. The results are displayed in Fig. 5 in the form of a parametric K vs. K
plot, where t is the parameter, the value of K(t) for the thinned process is the x
coordinate and the value of K(t) for any other process (indicated in the legend)
is the y coordinate. This modality of plot is proposed by Diggle [17].

In the plot the K function of the actual thinned process is the black identity
curve, and the dashed line is the theoretically predicted function, according to
the formula K(t) = πt2.

The shaded area under the dashed line represents a min-max envelope. An
envelope is a curve which is constructed from a set of curves by means of some
type of operation. The minimum and maximum envelopes are constructed from
the empirical K functions of simulated Poisson processes according to:

U(t) = max{K1(t),K2(t), . . .}, L(t) = min{K1(t),K2(t), . . .} (12)

and the shaded area is the region between both curves. The goal of constructing
an envelope is to represent the dispersion of the empirical functions around their
calculated expected value for each t.

In our case, the envelope is bent upward for small values of t, that is, the
process lacks small distances between points, which indicates a departure from
the Poisson hypothesis. Our process exhibits repulsion between points.
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Fig. 5. Empirical Ripley’s K function of the actual distribution, theoretical function
for Poisson homogeneous processes (dashed) and min-max envelopes for 100 simulated
Poisson homogeneous processes (shaded).

6 Harmonic Deformation of Delaunay Triangulation

In a recently published paper, Ferrari, Groisman and Grisi [15] proved the exis-
tence and constructed a point process model that seems to fit well the distribu-
tion of antennas.

Let X be an homogeneous PPP in R2. The Voronoi cell associated to each
point p of X is the region made up of all points in R2 which are closer to p than
to any other point of X. The Voronoi neighbors of p are all the points of X other
than p whose Voronoi cell’s closure intersects the closure of the one of p, that is,
the owners of the adjacent cells. The Delaunay triangulation of X is the graph
built from all points of X and all edges made up of pairs of Voronoi neighbors.

Let H : X → R2 be a function with the properties that for each p in X, H(p)
is located at the barycenter of {H(q)|q ↔ p}. Here q ↔ p denotes that p and q
are Delaunay neighbors.

Such a function is called a “Harmonic function”, and its existence was proved
in the above cited paper. It represents a position change made to every point
of X such that every point is relocated in the barycenter of its, also relocated,
Delaunay neighbors (as illustrated by Fig. 6).3

This original model must be in our case somehow adapted to fulfil our needs.
The main idea is to simulate a non-homogeneous PPP according to our esti-
mated intensity ρ̂ for the city of Buenos Aires (CABA), calculate its Delaunay
triangulation and finally apply a function similar to H to locate every point at

3 The two illustrations of Fig. 6 were extracted from Ferrari, Groisman and Grisi [15].
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Fig. 6. Delaunay triangulation of an homogeneous PPP (left) and its harmonic defor-
mation (right). The star indicates the origin (left) and H(0) (right).

the barycenter of its neighbors. Since our region is bounded, we cannot let the
condition (1) hold for every point because the only possible solution would be
that all points were collapsed to an unique point. It is therefore necessary to al-
low some points to not meet this condition, and to keep them fixed by H instead.

Which points should be kept fixed? Many recipes were tested empirically:
letting too few fixed points leads to an unwanted deformation of the intensity
of the resulting process; letting too many fixed points fails to deviate from the
Poisson model. Ultimately, we would like to perform the harmonic deformation
over our bounded region S, without fixing any point and without altering the
original intensity function. Our proposed solution is therefore to:

– Extend the intensity function smoothly over a box B containing region S.

– Simulate a PPP according to this intensity in B \ S.

– Join these points with the ones in S.

– Perform an harmonic deformation in B leaving the points in B \ S fixed.

In order to smoothly extend, in an approximate manner, the intensity func-
tion, there is a simple approach that consists in dividing the box B into a grid
and assign to each intersection of grid lines a variable ρij . For those intersec-
tions falling inside S, the variables are fixed to the actual value of the intensity
function. For those intersections falling in B \S the values are to be determined;
and for those falling in the border of B the values are fixed to zero. The linear
equations:

ρij = (ρi+1,j + ρi,j+1 + ρi−1,j + ρi,j−1)/4 (13)

hold for each intersection in B \ S, the resulting system is determined and can
be solved by matrix inversion or any other more efficient algorithm. Once all the
values of the extended function at the intersections are found, the value of the
function in an arbitrary point of the box B can be set to match those of the
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Fig. 7. Smooth extension of the intensity function to a box containing the city of
Buenos Aires.

nearest grid intersection. This corresponds to the harmonic extension of ρ from
S to B.

The harmonic deformation can be achieved by an iterative procedure. First
the Delaunay triangulation is calculated for the whole box B, consisting of the
original points belonging to S and the simulated ones. Any point may have
several neighbors from the two classes. A Delaunay triangulation function “de-
launayn()” is built in the library “geometry” from R. Secondly the points within
S are copied into a sequence. Then an iteration is made over this sequence,
where each step consists of relocating the present element at the barycenter of
its neighbors. Thus, the points in B\S are always fixed and the ones in S change
within each iteration and are stored in the sequence. This iteration is performed
several times until some prescribed degree of convergence is achieved.

This sole model is better than the Poisson model but its is not enough by its
own, because it is not realistic. In the actual distribution, each antenna is not
located exactly at the barycenter of its neighbors. In order to make the model
fit better the real distribution of antennas, we will add a noise parameter ε so
that for every x ∈ X the following condition hold:

x|{y ∈ X|y ↔ x} ∼ N2(µ, ε(µ)I) (14)

µ =
1

nx

∑
y↔x

y (15)

where nx is the number of neighbors of x. This means that for each x ∈ X,
conditioned on the position of its neighbors, the position of x is Gaussian with
mean the barycenter µ of the neighbors and variance equal to ε. A more detailed
study of ε as a function ε(x) is left to further work.
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The following R code implements the complete procedure. In this code we
take ε(x) as the square root of the (estimated density) at x.

#build a neighborhood matrix from the output of "delaunayn()"

#applied to the simulated poisson process "pois_sim" in B.

#"pois_sim" is built from the simulated points in S and c(S)

count_S <- ncol(pois_sim_S)

pois_sim <- cbind(pois_sim_S,pois_sim_cS)

count_B <- ncol(pois_sim)

neighb_matrix <- matrix(0,count_B,count_B)

simplexes <- delaunayn(t(pois_sim))

for (i in seq(1,nrow(simplexes))){

neighb_matrix[simplexes[i,1],simplexes[i,2]] <- 1

neighb_matrix[simplexes[i,2],simplexes[i,1]] <- 1

neighb_matrix[simplexes[i,1],simplexes[i,3]] <- 1

neighb_matrix[simplexes[i,3],simplexes[i,1]] <- 1

neighb_matrix[simplexes[i,3],simplexes[i,2]] <- 1

neighb_matrix[simplexes[i,2],simplexes[i,3]] <- 1

}

#iterate the relocation procedure until each point x moves

#less than k.epsilon(x). In this example k=3.

done <- FALSE

while(done == FALSE){

done <- TRUE

for(i in seq(1,count_S)){

relocated_point <- c(0,0)

count_neighb <- 0

for(j in seq(1,count_B)){

relocated_point <- relocated_point + ~

pois_sim[,j] * neighb_matrix[i,j]

count_neighb <- count_neighb + 1 * neighb_matrix[i,j]

}

relocated_point <- relocated_point / count_neighb

#once the point is in the barycenter of neighbors, add noise

relocated_point <- relocated_point + ~

rnorm(n=2,mean=0,sd=epsilon(relocated_point))

if(sqrt(sum((relocated_point - pois_sim[,i])^2)) > ~

3*epsilon(pois_sim[,i])){

done <- FALSE

}

pois_sim[,i] <- relocated_point

}

}

Figure 8 displays the final result and assessment of the harmonic deformation
with noise model via the Ripley’s K function. The left image also includes the
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auxiliary points from the simulated PPP in B \ S (grey) used to construct the
model. As it can be seen on the image, there is no significant deviation between
the K function of the actual distribution of antennas and the final simulated
model.

Fig. 8. Example of the final model (left). Upper and lower envelopes of Ripleys K
function for 100 simulated (and homogenized) processes from the harmonic deformation
with noise model (right).

7 Conclusions

Using real cell tower location data, we showed that a Poisson point process is
not a realistic model for the distribution of antennas in cellular phone networks.
We proposed an alternative point process in which each point is (conditioned
on the positions of its neighbors) distributed according to a bivariate Gaussian
distribution centered at the barycenter of the neighbors. Several models can
be used to describe the variance of these Gaussian distributions. We are still
investigating which is the most suitable.

We used real data for the location of antennas in the city of Buenos Aires
to show that this model is adequate for this situation. The extension to other
cities or regions is planed as future work. This model can be used to generate a
realistic spatial distribution of antennas, or to simulate the growth of the network
(i.e. the increase in number of antennas). Since the real location of antennas is
sensitive and proprietary information, the possibility of generating a synthetic
distribution is also useful in practice: such distribution can be freely shared with
research groups, thus fostering collaborations between industry and academic
research.
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