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Abstract

Golumbic, Lipshteyn and Stern proved that every graph can be represented as the
edge intersection graph of paths on a grid, i.e., one can associate to each vertex of
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the graph a nontrivial path on a grid such that two vertices are adjacent if and only
if the corresponding paths share at least one edge of the grid. For a nonnegative
integer k, Bk-EPG graphs are defined as graphs admitting a model in which each
path has at most k bends. Circular-arc graphs are intersection graphs of open arcs
of a circle. It is easy to see that every circular-arc graph is B4-EPG, by embedding
the circle into a rectangle of the grid. In this paper we prove that every circular-arc
graph is B3-EPG, but if we restrict ourselves to rectangular representations there
exist some graphs that require paths with four bends. We also show that normal
circular-arc graphs admit rectangular representations with at most two bends per
path. Moreover, we characterize graphs admitting a rectangular representation with
at most one bend per path by forbidden induced subgraphs, and we show that they
are a subclass of normal Helly circular-arc graphs.

Keywords: edge intersection graphs, paths on a grid, forbidden induced
subgraphs, (normal, Helly) circular-arc graphs.

1 Introduction

Edge intersection graphs of paths on a grid (EPG graphs) are graphs whose
vertices can be represented as nontrivial paths on a grid such that two vertices
are adjacent if and only if the corresponding paths share at least one edge of
the grid. Every graph can be represented in such a way on a large enough grid
and allowing an arbitrary number of bends (turns on a grid point) for each
path [10]. In recent years, the subclasses in which the number of bends of each
path is bounded by some number k, known as Bk-EPG graphs, were widely
studied [2,1,3,7,10]. For instance, it is easy to see that B0-EPG graphs are
exactly the class of interval graphs (intersection graphs of intervals on a line)
[10]. Similarly, a natural representation of circular-arc graphs (intersection
graphs of open arcs on a circle) as EPG graphs arises by identifying the circle
with a rectangle of the grid. So circular-arc graphs are a subclass of B4-EPG
graphs. This leads to some natural questions, as for example the existence of
k < 4 such that circular-arc graphs are a subclass of Bk-EPG graphs, and the
characterization of circular-arc graphs that are Bk-EPG graphs, for k < 4.
Also, how many bends per path are needed for a circular-arc graph to be
represented in a rectangle, i.e., in such a way that the union of the paths is
contained in a rectangle of the grid.

One of the main results of this paper is to prove that circular-arc graphs
are a subclass of B3-EPG graphs, and that there exist some circular-arc graphs
in B3-EPG \ B2-EPG. We also consider here EPG representations in which
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the union of the paths is contained in a rectangle of the grid. We will call
these graphs edge intersection graphs of paths on a rectangle (or for short EPR
graphs). It is easy to see that EPR graphs are exactly the circular-arc graphs.
We will study the classes Bk-EPR, for 0 ≤ k ≤ 4, in which the paths on the
grid that represent the vertices of G have at most k bends.

In this paper we focus on B1-EPR graphs and B2-EPR graphs (B0-EPR
graphs are the class of interval graphs), and relate these classes with the class
of normal Helly circular-arc graphs. The contributions of this paper with
respect to EPR graphs are: we prove that normal circular-arc graphs are B2-
EPR; moreover, we show that B1-EPR graphs are normal Helly circular-arc;
finally, we characterize by forbidden induced subgraphs B1-EPR graphs. We
will also show, for completeness, that there are graphs in B4-EPR \ B3-EPR,
and in B3-EPR \ B2-EPR.

2 Preliminaries

In this paper all graphs are connected, finite and simple. Notation we use is
that used by Bondy and Murty [4].

We will denote by Cn the chordless cycle of n vertices and by Cn its com-
plement. A thick spider Sn is the graph whose 2n vertices can be partitioned
into a complete c1, . . . , cn and a stable set s1, . . . , sn in such a way that, for
1 ≤ i, j,≤ n, ci is adjacent to sj if and only if i �= j. Note that Sk is an
induced subgraph of Sn if k ≤ n.

A graph G is a circular-arc graph (for short CA graph) if it is the vertex
intersection graph of a set A of open arcs on a circle C, and (A, C) is called
a circular-arc model of G [13]. A graph G is a Helly circular-arc graph (or
for short HCA graph) if it is a circular-arc graph having a circular-arc model
such that any subset of pairwise intersecting arcs has a common point on the
circle [9]. A circular-arc graph having a circular-arc model without two arcs
covering the whole circle is called a normal circular-arc graph (or for short
NCA graph). Circular-arc models that are at the same time normal and Helly
are precisely those without three or less arcs covering the whole circle. A
graph that admits such a model is called a normal Helly circular-arc graph
(or for short NHCA graph) [11].

In [5], Cao, Grippo and Safe give a characterization of NHCA graphs by
forbidden induced subgraphs. Recent surveys on circular-arc graphs are [6,12].
A new characterization of circular-arc graphs by forbidden structures can be
found in [8].
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3 Main results

One of our main results is the following.

Theorem 3.1 Every circular-arc graph is B3-EPG. The thick spider S46 is
in B3-EPG \ B2-EPG.

Proof. Let G be a circular-arc graph and let (A, C) be a circular-arc model of
G. W.l.o.g., we may assume that the endpoints of the arcs are all distinct and
we can number them clockwise in the circle from 1 to 2n (being n the number
of vertices of G) and define a point 0 in the circle between 2n and 1 (clockwise).
The arc (a, b), 1 ≤ a, b ≤ 2n, means the arc in the circle traversing clockwise
from point a to point b. In particular, and arc (a, b) contains point 0 of C if and
only if a > b. The set of vertices X of G corresponding to the arcs containing
point 0 of C induce a complete subgraph on G. Moreover, G−X is an interval
graph that can be represented on a line by taking, for each vertex, the interval
(a, b) defined by the endpoints of its corresponding arc, since a < b for vertices
of G − X. We will construct the following model of G on a grid. For each
vertex of G−X corresponding to an arc (a, b), assign the 3-bends-path on the
grid whose vertices are (0, b), (0, a), (a, a), (a, 0), (b, 0). For each vertex of X
corresponding to an arc (a, b) (in this case a > b), assign the 3-bends-path on
the grid whose vertices are (0, 0), (0, b), (a, b), (a, 0), (2n + 1, 0). Since all the
endpoints of the arcs in A are different, the edge intersections of the paths
are either on row 0 or on column 0 of the grid. Two intervals corresponding
to vertices of G − X intersect if and only if the corresponding arcs intersect
on C. Two intervals corresponding to vertices of X intersect at least at the
edge of the grid (0, 0), (0, 1). The interval corresponding to a vertex in G−X
with endpoints (a, b) and the interval corresponding to a vertex in X with
endpoints (c, d) intersect if and only if either d > a or c < b, and the same
condition holds for the arcs in C. The proof of S46 being in B3-EPG \ B2-EPG
is omitted due to lack of space. �

We do not know if 46 is the minimum k such that Sk ∈ B3-EPG \ B2-
EPG, but for S46 the proof is very simple. We leave as an open problem the
characterization of AC ∩ B2-EPG and AC ∩ B1-EPG by minimal forbidden
induced subgraphs.

In the following, we focus on circular-arc graphs representations as edge
intersection graphs of paths with a bounded number of bends on a rectangle
of the grid.

Theorem 3.2 NCA � B2-EPR.
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Proof. Let (A, C) be a NCA model of a graph. W.l.o.g., we may assume that
the endpoints of the arcs are pairwise different. Let p be a point of C that is
not the endpoint of an arc of A. Since the model is normal, the union of the
arcs of A that contain p does not cover C so, by our assumption, there is a
point q in C that is not the endpoint of an arc of A and is not contained in
the union of the arcs of A that contain p. We can then embed our model on
a rectangle of the grid in such a way that two consecutive corners correspond
to point p of the circle and the remaining two corners correspond to point
q of the circle. In this way, since no arc of A contains both p and q, paths
corresponding to arcs containing either p or q have two bends, while paths
corresponding to arcs containing neither p nor q have no bends. It can be
seen that the thick spider S6 is in B2-EPR \ NCA. Hence, the inclusion is
proper. �

Lemma 3.3 B1-EPR � NHCA.

Proof. Let 〈P ,R〉 be a B1-EPR representation of a graph G, where P is the
family of paths with at most one bend each and R is a rectangle of a grid
containing the union of the paths in P . We will consider the natural bijection
between R and a circle C, that maps the paths in P to open arcs A of C.
Notice that two open arcs intersect if and only if the corresponding paths
of P intersect on an least one edge of the grid. So (A, C) is a circular-arc
representation of G. Now, since each path has at most one bend and the arcs
are open, the union of three (resp. two) arcs of A contains at most three
(resp. two) points of C corresponding to corners of R. In particular, since R
has four corners, it does not cover the whole circle. Hence (A, C) is a NHCA
model for G. It can be seen that the NHCA graph C7 is not a B1-EPG graph,
thus is not a B1-EPR graph. Hence, the inclusion is proper. �

We will prove the following theorem by characterizing the structure of
B1-EPR graphs and their NHCA models.

A snail is a claw-free NHCA graph containing an induced C4, namely
v1v2v3v4, and such that initializing Vi = {vi} for i = 1, . . . , 4 and performing
the iterative process Vi = Vi∪{v} if v has neighbors in Vi−1, Vi and Vi+1 (mod
4), at some step there is a vertex having neighbors in every Vi, for i = 1, . . . , 4.
For example, the graph C7 is a snail.

Theorem 3.4 G ∈ B1-EPR if and only if G ∈ NHCA and G has no snail as
induced subgraph.

Proposition 3.5 The thick spiders S3, S7, and S13, belong to B2-EPR \ B1-
EPR, B3-EPR \ B2-EPR, and B4-EPR \ B3-EPR, respectively.
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We leave as an open problem the characterization of AC ∩ B2-EPR and
AC ∩ B3-EPR by minimal forbidden induced subgraphs, and the explicit
description of all the minimal snails.
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