On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

Liliana Alcón ${ }^{\text {a }}$ Flavia Bonomo ${ }^{\text {b,g }}$ Guillermo Durán ${ }^{\text {c,d,g }}$ Marisa Gutierrez ${ }^{\text {a,g }}$ María Pía Mazzoleni ${ }^{\text {a,g }}$ Bernard Ries ${ }^{\text {e }}$ Mario Valencia-Pabon ${ }^{\mathrm{f}}$
${ }^{\text {a }}$ Dto. de Matemática, FCE-UNLP, La Plata, Argentina
${ }^{\text {b }}$ Dto. de Computación FCEN-UBA, Buenos Aires, Argentina
${ }^{\text {c }}$ Dto. de Matemática e Inst. de Cálculo FCEN-UBA, Buenos Aires, Argentina
${ }^{\text {d }}$ Dto. de Ingeniería Industrial, FCFM-Univ. de Chile, Santiago, Chile
e Université Paris-Dauphine, LAMSADE, Paris, France
${ }^{\text {f }}$ Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France. Currently in Délégation at the INRIA Nancy - Grand Est, France
8 CONICET

Abstract

Golumbic, Lipshteyn and Stern proved that every graph can be represented as the edge intersection graph of paths on a grid, i.e., one can associate to each vertex of

E-mail addresses: liliana@mate.unlp.edu.ar; fbonomo@dc.uba.ar; gduran@dm.uba.ar; marisa@mate.unlp.edu.ar; pia@mate.unlp.edu.ar; bernard.ries@dauphine.fr; valencia@lipn.univ-paris13.fr. This work was partially supported by MathAmSud Project 13MATH-07 (Argentina-Brazil-Chile-France), UBACyT Grant 20020130100808BA, CONICET PIP 122-01001-00310, 112-200901-00178 and 112-201201-00450CO and ANPCyT PICT 2010-1970 and 2012-1324 (Argentina), FONDECyT Grant 1140787 and Millennium Science Institute "Complex Engineering Systems" (Chile).

the graph a nontrivial path on a grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, B_{k}-EPG graphs are defined as graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is B_{4} - EPG , by embedding the circle into a rectangle of the grid. In this paper we prove that every circular-arc graph is B_{3}-EPG, but if we restrict ourselves to rectangular representations there exist some graphs that require paths with four bends. We also show that normal circular-arc graphs admit rectangular representations with at most two bends per path. Moreover, we characterize graphs admitting a rectangular representation with at most one bend per path by forbidden induced subgraphs, and we show that they are a subclass of normal Helly circular-arc graphs.

Keywords: edge intersection graphs, paths on a grid, forbidden induced subgraphs, (normal, Helly) circular-arc graphs.

1 Introduction

Edge intersection graphs of paths on a grid (EPG graphs) are graphs whose vertices can be represented as nontrivial paths on a grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. Every graph can be represented in such a way on a large enough grid and allowing an arbitrary number of bends (turns on a grid point) for each path [10]. In recent years, the subclasses in which the number of bends of each path is bounded by some number k, known as B_{k}-EPG graphs, were widely studied $[2,1,3,7,10]$. For instance, it is easy to see that B_{0}-EPG graphs are exactly the class of interval graphs (intersection graphs of intervals on a line) [10]. Similarly, a natural representation of circular-arc graphs (intersection graphs of open arcs on a circle) as EPG graphs arises by identifying the circle with a rectangle of the grid. So circular-arc graphs are a subclass of B_{4}-EPG graphs. This leads to some natural questions, as for example the existence of $k<4$ such that circular-arc graphs are a subclass of B_{k}-EPG graphs, and the characterization of circular-arc graphs that are B_{k}-EPG graphs, for $k<4$. Also, how many bends per path are needed for a circular-arc graph to be represented in a rectangle, i.e., in such a way that the union of the paths is contained in a rectangle of the grid.

One of the main results of this paper is to prove that circular-arc graphs are a subclass of B_{3}-EPG graphs, and that there exist some circular-arc graphs in $B_{3}-\mathrm{EPG} \backslash B_{2}-\mathrm{EPG}$. We also consider here EPG representations in which
the union of the paths is contained in a rectangle of the grid. We will call these graphs edge intersection graphs of paths on a rectangle (or for short EPR graphs). It is easy to see that EPR graphs are exactly the circular-arc graphs. We will study the classes B_{k}-EPR, for $0 \leq k \leq 4$, in which the paths on the grid that represent the vertices of G have at most k bends.

In this paper we focus on B_{1}-EPR graphs and B_{2}-EPR graphs (B_{0}-EPR graphs are the class of interval graphs), and relate these classes with the class of normal Helly circular-arc graphs. The contributions of this paper with respect to EPR graphs are: we prove that normal circular-arc graphs are B_{2} EPR; moreover, we show that B_{1}-EPR graphs are normal Helly circular-arc; finally, we characterize by forbidden induced subgraphs B_{1}-EPR graphs. We will also show, for completeness, that there are graphs in B_{4}-EPR $\backslash B_{3}$-EPR, and in B_{3}-EPR $\backslash B_{2}$-EPR.

2 Preliminaries

In this paper all graphs are connected, finite and simple. Notation we use is that used by Bondy and Murty [4].

We will denote by C_{n} the chordless cycle of n vertices and by $\overline{C_{n}}$ its complement. A thick spider S_{n} is the graph whose $2 n$ vertices can be partitioned into a complete c_{1}, \ldots, c_{n} and a stable set s_{1}, \ldots, s_{n} in such a way that, for $1 \leq i, j, \leq n, c_{i}$ is adjacent to s_{j} if and only if $i \neq j$. Note that S_{k} is an induced subgraph of S_{n} if $k \leq n$.

A graph G is a circular-arc graph (for short CA graph) if it is the vertex intersection graph of a set \mathcal{A} of open arcs on a circle \mathcal{C}, and $(\mathcal{A}, \mathcal{C})$ is called a circular-arc model of G [13]. A graph G is a Helly circular-arc graph (or for short HCA graph) if it is a circular-arc graph having a circular-arc model such that any subset of pairwise intersecting arcs has a common point on the circle [9]. A circular-arc graph having a circular-arc model without two arcs covering the whole circle is called a normal circular-arc graph (or for short NCA graph). Circular-arc models that are at the same time normal and Helly are precisely those without three or less arcs covering the whole circle. A graph that admits such a model is called a normal Helly circular-arc graph (or for short NHCA graph) [11].

In [5], Cao, Grippo and Safe give a characterization of NHCA graphs by forbidden induced subgraphs. Recent surveys on circular-arc graphs are [6,12]. A new characterization of circular-arc graphs by forbidden structures can be found in [8].

3 Main results

One of our main results is the following.
Theorem 3.1 Every circular-arc graph is $B_{3}-E P G$. The thick spider S_{46} is in $B_{3}-E P G \backslash B_{2}-E P G$.

Proof. Let G be a circular-arc graph and let $(\mathcal{A}, \mathcal{C})$ be a circular-arc model of G. W.l.o.g., we may assume that the endpoints of the arcs are all distinct and we can number them clockwise in the circle from 1 to $2 n$ (being n the number of vertices of G) and define a point 0 in the circle between $2 n$ and 1 (clockwise). The arc $(a, b), 1 \leq a, b \leq 2 n$, means the arc in the circle traversing clockwise from point a to point b. In particular, and arc (a, b) contains point 0 of \mathcal{C} if and only if $a>b$. The set of vertices X of G corresponding to the arcs containing point 0 of \mathcal{C} induce a complete subgraph on G. Moreover, $G-X$ is an interval graph that can be represented on a line by taking, for each vertex, the interval (a, b) defined by the endpoints of its corresponding arc, since $a<b$ for vertices of $G-X$. We will construct the following model of G on a grid. For each vertex of $G-X$ corresponding to an $\operatorname{arc}(a, b)$, assign the 3 -bends-path on the grid whose vertices are $(0, b),(0, a),(a, a),(a, 0),(b, 0)$. For each vertex of X corresponding to an arc (a, b) (in this case $a>b$), assign the 3-bends-path on the grid whose vertices are $(0,0),(0, b),(a, b),(a, 0),(2 n+1,0)$. Since all the endpoints of the arcs in \mathcal{A} are different, the edge intersections of the paths are either on row 0 or on column 0 of the grid. Two intervals corresponding to vertices of $G-X$ intersect if and only if the corresponding arcs intersect on \mathcal{C}. Two intervals corresponding to vertices of X intersect at least at the edge of the grid $(0,0),(0,1)$. The interval corresponding to a vertex in $G-X$ with endpoints (a, b) and the interval corresponding to a vertex in X with endpoints (c, d) intersect if and only if either $d>a$ or $c<b$, and the same condition holds for the arcs in \mathcal{C}. The proof of S_{46} being in B_{3}-EPG $\backslash B_{2}$-EPG is omitted due to lack of space.

We do not know if 46 is the minimum k such that $S_{k} \in B_{3}$-EPG $\backslash B_{2^{-}}$ EPG, but for S_{46} the proof is very simple. We leave as an open problem the characterization of $\mathrm{AC} \cap B_{2}$-EPG and $\mathrm{AC} \cap B_{1}$-EPG by minimal forbidden induced subgraphs.

In the following, we focus on circular-arc graphs representations as edge intersection graphs of paths with a bounded number of bends on a rectangle of the grid.
Theorem 3.2 $N C A \subsetneq B_{2}-E P R$.

Proof. Let $(\mathcal{A}, \mathcal{C})$ be a NCA model of a graph. W.l.o.g., we may assume that the endpoints of the arcs are pairwise different. Let p be a point of \mathcal{C} that is not the endpoint of an arc of \mathcal{A}. Since the model is normal, the union of the arcs of \mathcal{A} that contain p does not cover \mathcal{C} so, by our assumption, there is a point q in \mathcal{C} that is not the endpoint of an arc of \mathcal{A} and is not contained in the union of the arcs of \mathcal{A} that contain p. We can then embed our model on a rectangle of the grid in such a way that two consecutive corners correspond to point p of the circle and the remaining two corners correspond to point q of the circle. In this way, since no arc of \mathcal{A} contains both p and q, paths corresponding to arcs containing either p or q have two bends, while paths corresponding to arcs containing neither p nor q have no bends. It can be seen that the thick spider S_{6} is in B_{2}-EPR \backslash NCA. Hence, the inclusion is proper.
Lemma $3.3 B_{1}-E P R \subsetneq N H C A$.
Proof. Let $\langle\mathcal{P}, \mathcal{R}\rangle$ be a B_{1}-EPR representation of a graph G, where \mathcal{P} is the family of paths with at most one bend each and \mathcal{R} is a rectangle of a grid containing the union of the paths in \mathcal{P}. We will consider the natural bijection between \mathcal{R} and a circle \mathcal{C}, that maps the paths in \mathcal{P} to open $\operatorname{arcs} \mathcal{A}$ of \mathcal{C}. Notice that two open arcs intersect if and only if the corresponding paths of \mathcal{P} intersect on an least one edge of the grid. So $(\mathcal{A}, \mathcal{C})$ is a circular-arc representation of G. Now, since each path has at most one bend and the arcs are open, the union of three (resp. two) arcs of \mathcal{A} contains at most three (resp. two) points of \mathcal{C} corresponding to corners of \mathcal{R}. In particular, since \mathcal{R} has four corners, it does not cover the whole circle. Hence $(\mathcal{A}, \mathcal{C})$ is a NHCA model for G. It can be seen that the NHCA graph $\overline{C_{7}}$ is not a B_{1}-EPG graph, thus is not a B_{1}-EPR graph. Hence, the inclusion is proper.

We will prove the following theorem by characterizing the structure of B_{1}-EPR graphs and their NHCA models.

A snail is a claw-free NHCA graph containing an induced C_{4}, namely $v_{1} v_{2} v_{3} v_{4}$, and such that initializing $V_{i}=\left\{v_{i}\right\}$ for $i=1, \ldots, 4$ and performing the iterative process $V_{i}=V_{i} \cup\{v\}$ if v has neighbors in V_{i-1}, V_{i} and $V_{i+1}(\bmod$ 4), at some step there is a vertex having neighbors in every V_{i}, for $i=1, \ldots, 4$. For example, the graph $\overline{C_{7}}$ is a snail.
Theorem 3.4 $G \in B_{1}-E P R$ if and only if $G \in N H C A$ and G has no snail as induced subgraph.
Proposition 3.5 The thick spiders S_{3}, S_{7}, and S_{13}, belong to $B_{2}-E P R \backslash B_{1}$ $E P R, B_{3}-E P R \backslash B_{2}-E P R$, and $B_{4}-E P R \backslash B_{3}-E P R$, respectively.

We leave as an open problem the characterization of $\mathrm{AC} \cap B_{2}$-EPR and $\mathrm{AC} \cap B_{3}$-EPR by minimal forbidden induced subgraphs, and the explicit description of all the minimal snails.

References

[1] Asinowski, A. and B. Ries, Some properties of edge intersection graphs of singlebend paths on a grid, Discrete Math. 312 (2012), pp. 427-440.
[2] Asinowski, A. and A. Suk, Edge intersection graphs of systems of paths on a grid with a bounded number of bends, Discrete Appl. Math. 157 (2009), pp. 31743180.
[3] Biedl, T. and M. Stern, On edge intersection graphs of k-bend paths in grids, Discrete Math. Theoret. Comput. Sci. 12 (2010), pp. 1-12.
[4] Bondy, J. and U. Murty, "Graph Theory," Springer, New York, 2007.
[5] Cao, Y., L. Grippo and M. Safe, Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection (May 2014), arXiv:1405.0329v1 [cs.DM].
[6] Durán, G., L. Grippo and M. Safe, Structural results on circular-arc graphs and circle graphs: a survey and the main open problems, Discrete Appl. Math. 164 (2014), pp. 427-443.
[7] Epstein, D., M. Golumbic and G. Morgenststern, Approximation algorithms for $B_{1}-E P G$ graphs, Lect. Notes Comput. Sci. 8037 (2013), pp. 328-340.
[8] Francis, M., P. Hell and J. Stacho, Forbidden structure characterization of circular-arc graphs and a certifying recognition algorithm (August 2014), arXiv:1408.2639v1 [cs.DM].
[9] Gavril, F., Algorithms on circular-arc graphs, Networks 4 (1974), pp. 357-369.
[10] Golumbic, M., M. Lipshteyn and M. Stern, Edge intersection graphs of single bend paths on a grid, Networks 54 (2009), pp. 130-138.
[11] Lin, M., F. Soulignac and J. Szwracfiter, Normal Helly circular-arc graphs and its subclasses, Discrete Appl. Math. 161 (2013), pp. 1037-1059.
[12] Lin, M. and J. Szwarcfiter, Characterizations and recognition of circular-arc graphs and subclasses: A survey, Discrete Math. 309 (2009), pp. 5618-5635.
[13] Tucker, A., Characterizing circular-arc graphs, Bull. Amer. Math. Soc. 76 (1970), pp. 1257-1260.

