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Abstract. During development of a Service-oriented Application, some software
pieces could be fulfilled by the connection to Web Services. A list of candidate
Web Services could be obtained by making use of any service discovery registry,
which are then selected and integrated into the application. However, when it
comes to a distributed system, multiple functional and non-functional constraints
arise from the interaction between several service requesters and providers, par-
ticularly when composing different services. To overcome with such constraints,
in this work we propose to model service selection and composition scenarios
as Distributed Constraints Optimization Problems (DCOP). We propose different
modeling approaches and develop representative examples to be solved through
different DCOP algorithms. Also, we analyze the impact of possible extensions
to the model in the computability of the problem.

Keywords: Web Services, Service Selection, Service Composition, DCOP, DCSP,
Constraints Optimization

1 Introduction

Service Oriented Computing (SOC) is a computing paradigm whose main objective is
the development of distributed applications in heterogeneous environments, which are
built by assembling or composing existing functionality called service. Services are
published through a network and accessed by specific protocols [18, 12]. A Service-
oriented Architecture (SOA) is composed of three actors: a provider, a consumer and
a service registry. The registry is used by the provider to publish the description of
their services, and also for consumers looking for services that meet their needs. Once
a service is selected, it will be invoked from the client application [24]. In general,
service-oriented applications are implemented using Web Services technology. A Web
Service is a program with a well-defined interface which can be localized, published and
invoked using the standard Web infrastructure [17]. SOA provides a promising solution
for the seamless integration of business applications to create new value-added services,
i.e., composite services [8]. Practice witnesses a growing interest in the ad-hoc service
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composition in the areas of supply chain management, accounting, finances, eScience
as well as in multimedia applications.

However, with the growing number of alternative Web Services that provide sim-
ilar functionality, the composition issue becomes a decision problem on the selection
of component services with regard to functional and non-functional requirements and
constraints [2]. This is particularly true in the context of a distributed system [10],
where these constraints arise from the interaction between several service requesters
(probably competing for various services) and providers (probably competing for the
market share). Additionally, developers have to manually search for suitable services
in Web registries showing poorly relevant information. Even with a wieldy candidates
list, a developer must be skillful enough to determine the most appropriate service for
the consumer application. All of this implies a large effort to manage the Web Service
lifecycle, i.e., service discovery, selection, integration and composition.

Meanwhile, Distributed Constraint Optimization Problems (DCOP) is a promis-
ing approach for modeling distributed reasoning tasks that arise in multiagent systems.
Multiagent systems are composed of multiple, autonomous and interacting agents [25].
DCOP generalizes Constraint Satisfaction Problems (CSP), whose states and goals con-
form to a standard, structured, and very simple representation. Search algorithms can
take advantage of the structure of states and use general-purpose rather than problem-
specific heuristics to enable the solution of large problems. Perhaps most importantly,
the standard representation of the goal test reveals the structure of the problem it-
self [23].

In previous work [11, 6], we defined an approach for service selection, based in
an interface compatibility assessment of the candidate Web Services and the (poten-
tially partial) specification of the required functionality. In this work, we propose to
apply DCOP as an approach to model service selection and composition problems to be
solved in a decentralized way. We developed representative scenarios where distributed,
multiagent service requesters have to coordinate to select the best candidate services
without any centralized control. Also, we analyze the impact of possible extensions to
the model in the computability of the problem.

The rest of the paper is organized as follows. Section 2 briefly introduces DCOP
and Service Selection and Composition basics. Section 4 describes our proposal for
Service Selection and Composition modeled as a DCOP. Conclusions and future work
are presented afterwards.

2 Background

2.1 Distributed Constraints Optimization (DCOP)

Several researchers have proposed the Distributed Constraint Optimization Problem
(DCOP) for modeling a wide variety of multiagent coordination problems such as
distributed planning, distributed scheduling, distributed resource allocation and oth-
ers [27]. Multiagent systems are composed of multiple interacting agents, with two im-
portant capabilities [25]. First, they are at least to some extent capable of autonomous
action – i.e., deciding for themselves what they need to do in order to satisfy their
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Service Selection as DCOP 3

design objectives. Second, they are capable of interacting with other agents, not only
by exchanging data but also by coordinating, cooperating and negotiating with each
other. DCOP provides a useful framework for investigating how these agents can co-
ordinate their decision-making in a wide variety of domains. A DCOP includes a set
of variables, each variable is assigned to an agent who has control of its value, and
agents must coordinate their choice of values so that a global objective function – the
utility function – is optimized. The global objective function is modeled as a set of
constraints, and each agent knows about the constraints in which its variables are in-
volved. DCOP significantly generalizes the Distributed Constraint Satisfaction Problem
(DisCSP) framework [26] in which problem solutions are characterized with a designa-
tion of “satisfactory or unsatisfactory”, according to degrees of quality or cost [16].

Formally, a Distributed Constraint Optimization Problem (DCOP) consists of n vari-
ables V = x1,x2, ...,xn, each one assigned to an agent, where the values of the variables
are taken from finite, discrete domains D1,D2, ...,Dn, respectively. Only the agent who
is assigned a variable has control of its value and knowledge of its domain. The goal
for the agents is to choose values for its variables such that a given global objective
function is maximized (or minimized) [16].

The objective function is described as the summatory over a set of utility (cost)
functions. A cost function for a pair of variables xi,x j is defined as fi j : Di×D j → N.
The utility (cost) functions in DCOP are the analogue of constraints from DisCSP and
are sometimes referred to as “valued” or “soft” constraints. For convenience in this
paper, we will refer to these functions simply as constraints. The objective is to find an
assignment A of values to variables such that the aggregated utility (cost) function F is
maximized (or minimized).

2.2 Service Selection through Interface Compatibility Assessment

In previous work [6, 11], we defined an approach for service selection based in an In-
terface Compatibility Assessment. This procedure is focused in structural and semantic
aspects from candidate services. Given a required operation opR and an operation opS
from a candidate service, similarity cases are typified through the structural/semantic
similarity degree of the following elements: Return type [R], Exceptions [E], Opera-
tion Name [N], and Parameters [P]. Structural aspects involve data types equivalence
(mainly subtyping), while semantic aspects involve analysing identifiers similarity by
using WordNet as a semantic basis [15, 9].

The structural assessment is based in structural conditions for data type equivalence,
involving the subtyping relationship. It is expected that types on operations from a can-
didate service have at least as much precision as types on operations from a required
functionality. The String type is a special case, which is considered as a wildcard super-
type since it is generally used in practice by programmers to allocate different kinds of
data [19]. Complex types and ad-hoc exceptions imply a special treatment in which the
comprising fields must be equivalent one-to-one with fields from a counterpart complex
type.

The semantic assessment compares terms and identifiers from service interfaces –
e.g., operation and parameter names, or complex types. We adopted the lightweight
semantic basis WordNet, a widely accepted lexical database for the English language
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that is structured as a lexical tree. WordNet groups terms in synsets (synonym sets) that
represent the same lexical concept. Several relations connect different synsets, such as
hypo/hyperonymy, and antonymy. To determine the semantic similarity between two
identifiers, two terms lists are used as input [6]. First, a term separation step (consider-
ing typical naming conventions) extracts terms from identifiers. Then, a stopwords re-
moval step filters meaningless words (articles, pronouns, prepositions), and a semantic
stemming step reduces derived words to their base or root form. Finally, the identifiers
compatibility is calculated accounting the number of exact (identical) terms between
both terms lists; number of synonyms (words with the same meaning); number of hy-
peronyms (parents); and number of hyponyms (children).

Adaptability Value The structural and semantic assessment of interfaces outlines the
adaptation effort of integrating a candidate service into a client application. Hence, an
appraisal value named adaptability value (Formula 1) was defined to synthesize the
achieved compatibility between compared interfaces. For details of this procedure we
refer the reader to [11, 6].

adapVal =
∑

N
i=1(Max(AdapMap(opRi,opS j)))

N
(1)

Where N is the size of the required interface, and AdapMap is the best value among
the possible mappings for a required operation opRi with regard to the candidate opera-
tions opS j, calculated according to Formula 2.

adapMap(op,opS) = R+E +N +P (2)

Where R, E, N, P are the equivalence values between opR and opS for return type,
exceptions, operation names and parameters respectively.

3 Related Work

Artificial Intelligence has contributed significantly to the Web Services field, either in
the form of planning [4, 21], case based reasoning [13, 7], or constraints satisfaction/op-
timization [22, 1, 28, 14].

A foundational work of DCOP/CSP applied to service selection and composition
is [1]. This work presents a constraint driven Web service composition tool, which
allows the process designers to bind Web services to an abstract process, based on busi-
ness and process constraints and generate an executable process. It uses a multiphase
approach for constraint analysis. This work was done as part of the METEOR-S (Man-
aging End-To-End OpeRations for Services) framework. This framework manages the
complete lifecycle of semantic Web processes, which represent complex interactions
between semantic Web services.

Later, the work in [14] presents a consistency-based service composition approach,
where composition problems are modeled in a generative constraint-based formalism.
This approach is suitable for dynamic composition scenarios, where pre-planning or
prediction of the number of required services is not possible. Also, the work presents
the underlying domain-independent algorithm to find valid compositions, and shows
that it scales to non-trivial problems.
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More recently, the work in [28] presents a constraint satisfaction method for config-
uring (adapting) non-local service interfaces. This interface configuration approach for
distributed components assumes closed-source, black-box services (i.e., the behavioural
protocol is unknown). Thus, authors introduce a generic Message Definition Language,
which can extend the existing interfaces description languages, such as WSDL, with
support of subtyping, inheritance and polymorphism. Based in such language, an al-
gorithm solves the interface reconciliation (i.e., adaptation) problem using constraint
satisfaction.

Finally, the approach in [22] presents a constraint-driven dynamic RESTful service
composition. RESTful services follow a resource-centric approach, where resource rep-
resentations are accessed through standardized HTTP operations (GET, PUT, POST
and DELETE). Automatic RESTful composition is still unexplored as compared to
SOAP/WSDL-based services. Thus, the work proposes a goal-based constraint-driven
composition model, with automatic workflow generation, with support for nested com-
position – i.e., where a dynamic composition is created from other compositions.

4 Service Selection and Composition with DCOP

In this section, we detail our proposal of applying DCOP to model service selection and
composition problems. Also, we analyze the impact of possible extensions to the model
in the computability of the problem. We assume that the service selection and compo-
sition scenarios to be modeled present certain challenging characteristics. First, service
requesters define complex functionality – i.e., they require at least two functional cate-
gories. Also, these service requesters have to coordinate among them to select the better
candidate services in a decentralized way – i.e., as a choreography. Choreography tracks
the message interchange among multiple parties and sources from a third-party point of
view, rather than a specific business process that a single party executes [20]. Finally,
we assume the conversation and coordination among service requesters and providers
without any centralized control.

In the context of this work, each service requester defines required interfaces for
different functionalities. Also, several service providers may exist for a given func-
tionality, providing different interfaces. Thus, the utility function to be maximized is
the Adaptability Value (Formula 1) which accounts the difference between a requested
functionality (expressed through a required interface) and a candidate service interface.
Initially, we will assume that two service requesters are not allowed to select the same
service provider for a given functionality – for the sake of service availability and sim-
plicity of the model. Then we propose extensions to this simple model to capture more
realistic scenarios.

Let us consider D the adaptability value for each pair of interfaces in the form
(required, candidate). The value D represents the similarity between a required interface
and the interface of a candidate service. Then, the local utility function F is calculated
in each service requester as the sum of the D values for their requested functionalities.
The global utility function UF to be maximized is the sum of all F values in each
service requester. Thus,

local utility : FRi = ∑DRi ⇒ global utility : UF = ∑FRi
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4.1 Proof-of-Concept

To illustrate our proposal, we introduce a simple proof-of-concept example, consisting
in four service requesters R1,R2,R3,R4 which require different composite functional-
ities from three functional categories: Chat, Temperature Conversion and Calculator.
Different service providers are listed for each functionality and category, as shown in
Table 1. Finally, the complex required functionalities are defined as follows:

– R1 = {Chat, Temperature Conversion}
– R2 = {Chat, Calculator}
– R3 = {Temperature Conversion, Calculator}
– R4 = {Temperature Conversion}

The required interfaces are assumed to be the identical for each functional category
and requester – e.g., the Calculator functionality required by R3 is identical to the
Calculator functionality required by R2.

Table 1: Service providers by functional category for the example

Functional Category Service Name URI

Chat (instant
messaging)

OMS* www.nims.nl/soap/oms.wsdl

OMS2 Simple www.nims.nl/soap/oms2simple.wsdl

OMS2 www.nims.nl/soap/oms2.wsdl

Temperature
Conversion

TConversions webservices.daehosting.com/services/

TemperatureConversions.wso?

TempConvServ www.w3schools.com/xml/tempconvert.asmx?

CelsFar http://www.elguille.info/Net/WebServices/

CelsiusFahrenheit.asmx?

Calculator
CalcServ http://soatest.parasoft.com/axis/calculator.wsdl

SimpleCalc Local Sample Repository

*Online Messenger Service

4.2 Simple Model – Modeling Service Requesters

Considering the scenario presented in Section 4.1, the restrictions graph for this simple
model is shown in Figure 1a, where:

– requesters are represented as nodes,
– functional requirements are represented as variables, and
– providers are represented as the domain values for these variables.
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(a) Restrictions Graph for the example scenario (b) Restrictions Graph with Fake Node

Fig. 1: Restriction Graphs for the example scenario (simple model)

Restrictions (e.g., TempR1 6= TempR4) represent, for this particular domain, the as-
sumption “two service requesters are not allowed to simultaneously select the same
service provider for a given functionality”. In this model, local utility values are also
represented as constraints, particularly unary constraints – i.e., constraints that only in-
volve the agent that chooses that value. However, as the algorithms accepts only binary
restrictions, a fake node F is introduced to represent unary restrictions as binary ones,
as shown in Figure 1b. Agent in fake node F owns a variable but never chooses its value
over the “real” domain agents.

For the example scenario, the utility values between each pair of required and can-
didate service interfaces are shown in Table 2, where the higher utility values are better.
Parenthesized values in the “Provider” column correspond to the codification of each
provider as a value in the domain of the variables. For simplicity, utility values were
rounded to the nearest integer.

This model was used as input for two DCOP solving algorithms: the original ADOPT
(Asynchronous Distributed Constraint Optimization with Quality Guarantee)
algorithm [16], and the MCAdopt (Multiple Constrained Adopt) algorithm [5], which
includes a graphic interface showing the restrictions graph and allows multiple, simul-
taneous constraints.

Table 2: Utility Values (Adaptability Values) for Providers by Functional Category

Functional Category Service Provider (domain
value)

Utility Value

Chat (instant messaging)
OMS (0) 13
OMS2 (1) 06
OMS2 Simple (2) 11

Temperature Conversion
TConversions (0) 14
TempConvServ (1) 12
CelsFar (2) 10

Calculator
CalcServ (0) 14
SimpleCalc (1) 16
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Results The output corresponding to the ADOPT algorithm is shown in Listing 1. Vari-
ables 1 to 7 represent functional requirements of service requesters. Variable 0 repre-
sents the fake node. The mapping of Values to service providers are codified in Table 2.
According to such codification, this solution is optimal as it maximizes the utility func-
tion when selecting service providers, and complies with the defined constraints (each
provider can be assigned to only one requester). Broken constraints indicate when a
provider assignment is not optimal but is the best one available (since the optimal
provider was assigned to another agent).

Listing 1.1: Execution results for ADOPT algorithm in the simple scenario

Solution --------------------
agent1 -var1 = 2; agent1 -var2 = 2
agent2 -var3 = 0; agent2 -var4 = 1
agent3 -var5 = 0; agent3 -var6 = 0
agent4 -var7 = 1
agent5 -var0 = 0
quality: 90
broken constraints:
(agent5 -var0 , agent1 -var1)(agent5 -var0 , agent1 -var2)
(agent5 -var0 , agent2 -var3)(agent5 -var0 , agent3 -var5)
(agent5 -var0 , agent3 -var6)(agent5 -var0 , agent4 -var7)

For the MCAdopt algorithm, Figure 2 depicts the graphical output of the algorithm,
with the restrictions graph and the assignment results. Table 3 summarizes the results for
both algorithms, with the utility of assigned providers for each requested functionality
and total utility of both solutions. It is noticeable that both algorithms provide different
solutions, albeit optimal ones, as both solutions maximize the utility function.

Fig. 2: Restrictions Graph for the MCAdopt algorithm
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Table 3: Comparative Results with ADOPT and MCAdopt algorithms

Agent Variable (category) ADOPT value
(provider)

Uti-
lity

MCAdopt value
(provider)

Uti-
lity

Requester1
Var1 (Chat) 2 (Oms2Simple) 11 0 (Oms) 13
Var2 (Temperature) 2 (CelsFar) 10 2 (CelsFar) 10

Requester2
Var3 (Chat) 0 (Oms) 13 2 (Oms2Simple) 11
Var4 (Calculator) 1 (SimpleCalc) 16 0 (CalcServ) 14

Requester3
Var5 (Temperature) 0 (TConversions) 14 1 (TempConvServ) 12
Var6 (Calculator) 0 (CalcServ) 14 1 (SimpleCalc) 16

Requester4 Var7 (Temperature) 1 (TempConvServ) 12 0 (TConversions) 14

FakeNode Var8 - - - -

Total Cost 90 90

Another dimension to compare both algorithms is the average execution time. We
run the experiment 10 times for each algorithm: the average execution time for the
ADOPT algorithm was 2 seconds, while the average execution time for the MCAdopt
algorithm was 14 seconds.

4.3 Realistic Model

A possible extension for the simple model of the previous section arises from consid-
ering the following statement: “A provider could manage several requests simultane-
ously”. As the base case we consider up to two simultaneous requests.

Modeling n-ary Restrictions This model is similar to the simple model in the sense
that service requesters are nodes and service providers are the domain values for the
variables. Thus, the assumption “A provider could manage several requests simultane-
ously” can be stated from a requester’s point of view as “Among all the requesters of a
given functional category, up to two can select the same service provider”. In a scenario
with n requesters for a certain functional category, the aforementioned assumption is
modeled as a n-ary restriction among all requesters of such functional category.

To illustrate this situation, we consider a subset of the example presented in Sec-
tion 4.1, for the sake of simplicity. Let us consider R1temp, R3temp and R4temp the
variables for requesters R1, R3 and R4 respectively, while the values for these variables
represent the selection of a provider for the Temperature category. Figure 3a depicts the
ternary restriction 2equals (a particular case of the n-ary restriction) that allows up to
two variables to select the same value simultaneously.

As stated earlier, current DCOP algorithms only accept as input binary restrictions.
Thus, we follow the guidelines given in [3], where an n-ary constraint is represented as
binary constraints with regard to a new encapsulated variable U, which encapsulates the
variables involved in the n-ary constraint. The domain of the variable U is the cartesian
product of each encapsulated variable, restricted to the valid combinations of values for
such variables according to the defined constraint.
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In our example, the variable U will have a domain in the form of triples (r1,r3,r4)
where r1, r3 and r4 are the values assigned to R1temp, R3temp and R4temp respec-
tively, that satisfy the defined constraint (up to two variables can assume the same value
simultaneously). Then, if the domain for variables RiTemp is 0,1,2, the domain of the
variable U will be:

{(0,0,1);(0,0,2);(0,1,0);(0,1,1);(0,1,2). . . .(2,2,1)}

Finally, the constraint between each original variable and the variable U states that
each value in the triple equals to the value of the corresponding variable – e.g., if U =
{0,0,1} then R1temp = 0, R2temp = 0, R3temp = 1. Also, this model includes a fake node
F (as described in Section 4.2) to describe unary restrictions – as shown in Figure 3b.

This example run successfully with the original ADOPT algorithm. Results are
shown in Listing 2, where var-1, var-2 and var-3 corresponds to R1temp, R3temp
and R4temp respectively; var0 is the fake node and var4 is the encapsulated variable
U . Domain values are {0,1,2} with utility value {14,12,10}, corresponding to service
providers TConversions, TempConv and CelsFar respectively. Thus, the quality of the
solution is 40, being the optimal solution as two service requesters select the provider
TConversions (0) with maximum utility 14, and the remaining requester selects the
provider TempConv (1) with utility 12.

(a) Schematic Ternary Restriction (b) Graph with Fake Node F and Encapsulated
Variable U

Fig. 3: Modelling n-ary Restrictions

Listing 1.2: Execution results for ADOPT algorithm with n-ary constraints

Solution -------------
agent1 -var0 = 0; agent1 -var1 = 0; agent1 -var2 = 0
agent1 -var3 = 1; agent1 -var4 = 0
quality: 40; broken constraints: none
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5 Conclusion

This work proposed different models to represent service selection and composition as
a Distributed Constraint Optimization Problem (DCOP). This type of model is particu-
larly suitable in decentralized contexts, where conversational agents owned by service
requester have to coordinate to select the most suitable candidate services among a
limited subset of providers. We have shown the feasibility of this approach with the
adaptability value as utility function, which compares required interfaces and candi-
date service interfaces. Through a simple example, we reached optimal solutions using
alternative models and algorithms, namely ADOPT and MCAdopt algorithms. This
implies that service requesters could coordinate to maximize the assignment of optimal
providers without any centralized control. As future work, we are planning to address
the scalability of the model to support more realistic scenarios.

Limitations QoS features should be considered for the calculation of the utility func-
tion. However, the models can be easily generalized for any QoS metric. Besides, the
models are not scalable in a straightforward way. A simple assumption such as “a
provider may handle several requests at the same time” implies an exponential grow
of nodes and restrictions. Another limitation of this solution is the inconvenience of
adding new service providers for a given functional category on-the-fly, as this implies
re-calculating variable domains.
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