
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Interaction Models and Automated Control under
Partial Observable Environments

Daniel Ciolek?, Victor Braberman?, Nicolás D’Ippolito†?, Nir Piterman+ and Sebastián Uchitel†?

Abstract—The problem of automatically constructing a software component such that when executed in a given environment satisfies
a goal, is recurrent in software engineering. Controller synthesis is a field which fits into this vision. In this paper we study controller
synthesis for partially observable LTS models. We exploit the link between partially observable control and non-determinism and show
that, unlike fully observable LTS or Kripke structure control problems, in this setting the existence of a solution depends on the
interaction model between the controller-to-be and its environment. We identify two interaction models, namely Interface Automata and
Weak Interface Automata, define appropriate control problems and describe synthesis algorithms for each of them.

Index Terms—LTS, Controller Synthesis, Imperfect-Information Games.

F

1 INTRODUCTION

COMPONENT-BASED construction of software is based on
the idea that each component operationally contributes

to achieve a sub-goal and that the conjunction of these sub-
goals achieves system requirements set out by stakeholders.
Upon a specification change only affected components need
to be updated in order to adapt to the new requirements. In
this context, producing correct-by-construction components
is expected to ease development and maintenance, and has
been pursued in many guises and increasingly in adaptive
systems (e.g, [1], [2], [3], [4], [5]).

Controller synthesis is a field which fits into this vision
and that has been successful in hardware engineering (a
highly componentised engineering discipline). Traditional
controller synthesis (e.g. [6]) focuses on a component in-
teraction model based on shared memory, hence Kripke
structures are used as the formal setting for behaviour
modelling. However, in software engineering, a common
and relevant interaction model used to reason about system
behaviour is event-based; including message passing and
remote procedure calls among others. In particular we ad-
dress control problems for behaviour models expressed as
Labelled Transition Systems (LTS) and parallel composition
defined broadly as synchronous product. A setting widely
adopted in the software engineering literature.

We ground the general controller synthesis formulation:
given a model of the assumed behaviour of the environ-
ment, produce an operational behaviour model for a com-
ponent M such that when executing M in a consistent
environment E is guaranteed to satisfy a goal G, namely
E‖M |= G. We specify goals with a linear temporal logic
based of fluents [7] (FLTL) and operational models with LTS,
where the controller is able to control some events and only
monitor others [2], [8].

? Departamento de Computación, Universidad de Buenos Aires, Argentina
† Department of Computing, Imperial College, London, UK
+ Department of Computer Science, University of Leicester, Leicester, UK
Manuscript received DATE; revised DATE.
This work was partially supported by grants ERC PBM-FIMBSE, ANPCYT
PICT 2011-1774, ANPCYT PICT 2012-0724, ANPCYT PICT 2013-2341,
UBACYT 20020130100384BA, UBACYT 20020130300036BA, CONICET
PIP 112 201301 00688 CO, MEALS 295261.

In this paper we focus on partial observability with gen-
eral goal specifications (including liveness), but restricting
goal specifications to predicate on actions observable to the
controller (which allows for a simpler technical solution).
A partially observable environment has the capacity of
altering its state through an internal action (τ) invisible to
the controller. Internal actions naturally appear when there
is limited visibility of the environment and can also arise
from an abstraction of the behaviour of the environment.
Thus, partial observability results in uncertainty on the con-
troller’s side regarding the exact state of the environment.
Intuitively the behaviour of a partially observable system
can be captured by means of non-determinism. We show
that an adaptation of the classical notion of τ -closure (as pre-
sented in [9]) is required in order to preserve controllability
while translating the effects of partial observation to non-
determinism. On that account we exploit the link between
control under partial observability and non-determinism for
event-based control and devise algorithmic solutions for
both settings.

Having fixed LTS and FLTL as languages for E, M
and G, a key consideration is the interaction mechanism
modelled by the parallel composition operator ‖. In this
paper we explore two settings. The first is based on Interface
Automata (IA) [10] in which M must not, at any point in
time, block uncontrollable actions; nor issue actions that
are not enabled by E at that point in time. The second
setting, Weak Interface Automata (WIA), relaxes the latter
restriction and only expects M not to block uncontrollable
actions that E may wish to perform. Indeed, this weaker
setting allows M to offer more controlled actions than what
the environment may accept. This is akin to external choice
in CSP [9].

The IA setting is appropriate for problem domains in
which a failure ensues when a controller attempts to per-
form an action at a point in time when it is proscribed
by the environment. Such is commonly the case in robotics
and cyber-physical systems in general, but also in software
systems, for example in the use of APIs specified using
typestates [11], [12]. The WIA setting is appropriate for

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 7

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

problem domains in which interactions between M and
E are based on handshakes, rendezvous, and contexts in
which the controller can sense the subset of actions enabled
by the environment at a certain point in time.

The interaction model distinction is important because
in the WIA setting, controllers have additional capabilities
of reducing uncertainty about the system state and thus
can realise goals that are not achievable otherwise. The
WIA model is effectively a weaker version of the IA model
that arises from abstracting a handshake communication
mechanism. Hence, if there is a solution to the IA synthesis
problem there is also a solution in the WIA setting, but the
converse is not always true. Interestingly, the distinction
between interaction models is irrelevant for deterministic
control problems because the controller always has full in-
formation about the environment’s state, and for this reason
has never been studied for controller synthesis.

The first contribution of this paper is a reduction
from partially observable LTS control problems to non-
deterministic LTS control. We make clear the distinc-
tion between the problems and show that although non-
determinism has been extensively studied for Kripke style
models (e.g., [13]), its application to partially observable
event-based models raises different issues depending on the
specific interaction model chosen.

The second contribution of this paper is the definition
of IA and WIA non-deterministic LTS control problems and
algorithms for solving them. For this we use two different
styles of reductions, one for each interaction model. We
reduce the IA control problem to a deterministic LTS control
problem and also show how naive determinisation (in the
spirit of [14]) fails in the presence of liveness assumptions
and goals. On the other hand we reduce the WIA control
problem to an imperfect-information game [13] and com-
ment on a more direct and optimised algorithmic solution.

The rest of the paper is organised as follows. In Section 2
we motivate and explain the difference between the inter-
action models. Section 3 provides background that serves
as basis for the results herein. In Section 4 we present
and define IA and WIA LTS control problems for non-
deterministic domains. In Section 5 we present a reduction
from partially observable problems to the non-deterministic
case. Evaluation is provided in Section 6. Related work is
presented in Section 7. We close with a discussion about
future work and conclusions. Formal proofs for stated prop-
erties can be found as a supplemental Appendix.

2 MOTIVATION

In this section we provide an overview of what is meant by
controller synthesis and motivate the need for considering
the appropriate interaction model of the domain in which a
controller is to be deployed. We make casual use of the LTS
framework formally described in Section 3.

Consider the simple model depicted with an LTS in
Fig. 1a, which details the sequences of requests a server
can service without failing. The model stipulates that after
opening a session the server may be ready to provide
different services, namely x and y. At any point, the session
may be closed. Note than on opening the session, the server
may switch to maintenance mode, as a consequence clients

0
open // 1

τ //

τ

��

2

ready

��
4

close

OO

3
close

__

y
oo

x

QQ

(a) Server model

0
open //
open

��

2

ready

��
4

close

OO

3
close

^^

y
oo

x

QQ

(b) Server protocol

Fig. 1: Motivating Example

must wait for a ready event before making further requests.
Choosing between entering maintenance or not are internal
actions invisible to the client, thus characterized with τ . A
client connecting to this server must follow a valid sequence
of requests; a sequence such as open, y, x, close is guaran-
teed to fail as x cannot be served after y.

Observe that since switching to maintenance is an in-
ternal action, a client cannot determine the state the server
is in after opening the session. Thus from a client point
of view internal actions are absent and the protocol for
communicating with the server exhibits non-deterministic
behaviour, as depicted in Fig. 1b.

Controller synthesis can be used to automatically gen-
erate client behaviour that will guarantee a given goal. In
its simplest (and naive) formulation, it is only a matter of
automatically constructing a Controller LTS that restricts
occurrence of controlled actions (in this example all but
ready) and does so in a way that when composed in parallel
with the Server LTS satisfies the goal.

Let G be the simple goal of achieving y infinitely often.
In Fig. 2 we depict an LTS that satisfies this property
when composed with the Server LTS using standard LTS
composition.

0
open // 1

ready

��
y

��
3

close

OO

2y
oo

Fig. 2: Controller for goal G

Although the LTS in Fig. 2 would seem to be an adequate
controller for the Server, consider what happens when
enacting such controller by message passing: the controller
would first open a session and then would either wait for
the ready event or decide to go ahead with requesting y.
Should the environment be in a maintenance state (state 2
in Fig. 1a) when requesting y, a failure would ensue. Hence,
requesting x or y is not safe until the server has come out of
the maintenance state, i.e. wait for ready. However, it may
be the case that the Server did not enter in maintenance
(and is in state 3 in Fig. 1a), thus checking for ready leads
to waiting forever (not achieving the goal).

The reason why the LTS in Fig. 2 is not guaranteed to
achieve its goal when enacted against the server, while its
composition against the Server LTS does satisfy the goal, is
that standard LTS product does not match the client-server
interaction model of the domain where the controller is to
be enacted.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 8

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 3

The mismatch between parallel composition and the
interaction model for our motivating example can be re-
solved by requesting controllers to be legal in the sense
of Interface Automata [10]: the controller when executed
in parallel with the server must, at any point in time, not
block uncontrollable actions (i.e. ready) nor trigger actions
that are not enabled by the environment. Interface automata
were developed to capture precisely the interaction model of
service provision through interfaces with no handshaking.

It is straightforward to see that with the requirement of
being a legal interface automaton, there can be no controller
that achieves the goal as the controller does not have suffi-
cient information about the state of the server after the open
action. Had the controller been enacted in a context based on
rendezvous communication (provided by languages such as
ADA amongst others) then the requirements of being an
interface automaton would not be necessary. In this setting,
the controller would be prevented (by the environment)
from executing a controlled action that the environment
is not prepared to accept. Thus, an LTS such as the one
depicted in Fig. 2 would actually achieve its goals: having
opened a session, it could try to do y and would only
succeed if the environment is not in maintenance mode;
should the environment be in maintenance, the controller
would have no option but to wait for the ready event.

The possibility of relying on a handshaking mechanism
is the difference between there being a controller that can
achieve the goal or not. Indeed, this is because this inter-
action model allows the controller to gain some knowledge
about the state of the environment and exploit this knowl-
edge to achieve its goals. Clearly, should the controller have
full knowledge of the state of the environment, one or the
other interaction model provide no advantage.

In summary, the example discussed in this section at-
tempts to establish three points. The first is that the do-
main in which a controller is to be enacted determines
an interaction model that must be appropriately captured
when performing synthesis. The second is that standard
LTS product is only appropriate for some interaction models
(i.e., relying in some form of handshaking). The third is
that some interaction models provide the controller with
additional capabilities for reducing uncertainty about the
state of the environment and thus allow resolving control
problems that in other settings may be unrealisable.

In Section 4 we formalise two non-deterministic con-
troller synthesis problems, one for each interaction model
motivated above, and show how they can be resolved. In
Section 5 we formalise the same problems for partially
observable domains and provide reductions to the non-
deterministic case. Each control problem requires different
algorithmic treatment, so their specific synthesis algorithms
are also reported.

3 BACKGROUND

3.1 Labelled Transition Systems
Definition 1 (Labelled Transition Systems). A Labelled
Transition System (LTS) is a tuple E=(S,A,∆,s0), where S
is a finite set of states, A is its communicating alphabet,
∆ ⊆ (S × A × S) is a transition relation, and s0 ∈ S is the
initial state.

An LTS is deterministic if (s, `, s′) and (s, `, s′′) are in ∆
implies s′ = s′′. An LTS is partially observable if the special
label τ belongs to A.

Notation 1. Let E and M be LTSs such that:
• E = (SE , AE ,∆E , s0)
• M = (TM , AM ,∆M , t0)
• s and s′ are states of SE
• t and t′ are states of TM

Notation 2. We will denote (s, `, s′) ∈ ∆E by s `→E s′ and
call it a step.

Definition 2 (Parallel Composition). The Parallel Composi-
tion (‖) is a symmetric operator such that it yields an LTS
E‖M = (SE × TM , AE ∪ AM ,∆, 〈s0, t0〉), where ∆ is the
smallest relation that satisfies the rules:

s
`→E s′

〈s, t〉 `→E‖M 〈s′, t〉
` ∈ (AE \AM) ∪ {τ}

t
`→M t′

〈s, t〉 `→E‖M 〈s, t′〉
` ∈ (AM \AE) ∪ {τ}

s
`→E s′, t

`→M t′

〈s, t〉 `→E‖M 〈s′, t′〉
` ∈ (AE ∩AM) \ {τ}

We restrict attention to states in SE × TM that are reach-
able from the initial state 〈s0, t0〉 using transitions in ∆. Note
that the special transition τ does not cause an interaction in
the parallel composition.

Notation 3. We denote by s
`⇒E s′ that there exist a se-

quence of transitions starting in a state s and reaching a state
s′ after zero or more τ -transitions followed by exactly one `
transition (where ` could be τ) and again followed by zero
or more τ -transitions; we call s `⇒E s′ a walk. More formally,
there exists a sequence of states s0, . . . , si, si+1, . . . , sn, such
that s0 = s, sn = s′ and

s0
τ→E . . .

τ→E si
`→E si+1

τ→E . . .
τ→E sn

A walk captures the notion of τ -closure as in [9].

Notation 4. We use the following notation to refer to set of
transition labels:
• ∆E(s) = {` | s `→E s′}, the set of outgoing transition

labels from state s
• ∆∗E(s) = {` | s `⇒E s′ ∧ ` 6= τ}, the set of τ -reachable

transitions labels from state s
Note that when τ 6∈ AE , ∆E(s) = ∆∗E(s). We say a state

s of an LTS E is a deadlock if and only if ∆E(s) = ∅.

Given an LTS E, controller synthesis seeks for an LTS M
that restrictsE in order to achieve a given goal. Nevertheless
further restrictions can be imposed on M . Naturally given
a partition of the alphabet of E to controllable and uncon-
trollable actions (i.e. AE = AC∪̇AU), we want M to only
observe the actions in AU and to control the occurrence of
actions in AC . Additionally we differentiate controllers with
the capability of sensing the set of available controllable
actions. Thus we identify two possible requirements for
valid controllers.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 9

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Definition 3 (Weak Legal LTS). An LTS M is a weak legal
LTS for E if for all reachable states 〈s, t〉 of E‖M it holds
that ∆∗E(s) ∩ AU ⊆ ∆M (t) ∩ AU , or informally reachable
uncontrollable actions are not blocked.

Definition 4 (Legal LTS). An LTS M is a legal LTS for E
if it is weak legal and for all reachable states 〈s, t〉 of E‖M
it holds that ∆∗E(s) ∩ AC ⊇ ∆M (t) ∩ AC , or informally in
addition to not blocking uncontrollable actions M does not
enable controllable actions not allowed by E.

3.2 Fluent Linear Temporal Logic

Definition 5 (Trace). A trace of an LTS E is a τ -free
sequence of labels π=`0, `1 . . ., for which there exists a
sequence of states s0, s1, . . . such that ∀i≥0 . si

`i⇒E si+1.

We fix Fluent Linear Temporal Logic (FLTL) [7] as the
language for describing properties of LTS traces. FLTL is a
linear-time temporal logic for reasoning about fluents. The
logic has the same expressiveness as standard LTL [15].
However, as fluents can be used to overlay state-based
propositions on an event-based model, FLTL allows for
a more compact representation of properties. Intuitively
fluents are boolean values that can change over time as a
consequence of events.

Given a set of labels A, a fluent Fl=(IFl, TFl, InitFl)
is defined by a pair of sets and a Boolean value, where
IFl ⊆ A is the set of initiating actions and TFl ⊆ A is
the set of terminating actions such that IFl ∩ TFl = ∅. A
fluent may be initially true or false as indicated by InitFl.
Naturally, every label ` ∈ A induces a fluent, namely
fl ` = ({`}, A\{`}, false).

Let F be the set of all possible fluents over A. An FLTL
formula is defined inductively using the standard Boolean
connectives and temporal operators X (next), U (strong
until) as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

where Fl ∈ F . Additionally, as it is usual, we introduce ∧,
♦ (eventually), � (always) and W (weak until) as syntactic
sugar.

Let Π be the set of infinite traces over A. The trace π =
`0, `1, . . . satisfies a fluent Fl at position i, denoted π, i |=
Fl, if and only if one of the following holds:
• InitFl ∧ (∀j . 0 ≤ j ≤ i⇒ `j /∈ TFl)
• ∃j . j ≤ i ∧ `j ∈ IFl ∧ (∀k . j < k ≤ i⇒ `k /∈ TFl)
In other words, a fluent holds at position i if and only if

it holds initially and has not been terminated; or if some
initiating action has occurred, but no terminating action
has yet occurred. Note that fluents are not influenced by
τ happening.

For an infinite trace π, the semantics of a (composite)
formula ϕ at position i, denoted π, i |= ϕ, is commonly
defined as follows:

π, i |= ¬ϕ , ¬(π, i |= ϕ)
π, i |= ϕ ∨ ψ , (π, i |= ϕ) ∨ (π, i |= ψ)
π, i |= Xϕ , π, i+1 |= ϕ
π, i |= ϕUψ , ∃j . i ≤ j ∧ (π, j |= ψ)∧

∀k . i ≤ k < j ⇒ (π, k |= ϕ)

We say that an FLTL formula ϕ holds in the trace π,
denoted π |= ϕ, if π, 0 |= ϕ. Furthermore, ϕ holds in an
LTS E (denoted E |= ϕ) if it holds on every infinite trace
produced by E.

3.3 Imperfect-Information Games

The problem of synthesising a controller for a non-
deterministic environment model can be translated to find-
ing a winning strategy for an Imperfect-Information Game
(IIG), a problem that has been studied thoroughly. Such
strategy should take into account observations made in
order to reduce uncertainty in the attempt to determine a
course of action [13].

Definition 6 (Imperfect-Information Game). An Imperfect-
Information Game is a tuple G=(V,O,Γ, δ, v0, L, F), where
V is a set of locations, O a set of observations, Γ a set of
moves, δ : V × Γ → 2V a transition function associating
every location and move with a non-empty set of possible
successor locations, v0 ∈ V an initial location, L : V → O a
labelling function, and F ⊆ Oω a winning condition given
as the set of desirable sequences of observations.

A game is said to be full information if O = V and for
every location we have L(v) = v.

A play in G starts by placing a token on v0. When
the token is on node v the play is extended by Player 1
choosing a move γ ∈ Γ and by Player 2 choosing a successor
v′ ∈ δ(v, γ). An infinite play p = v0, v1, . . . is winning for
Player 1 if L(v0), L(v1), . . . ∈ F .

Definition 7 (Observation-Based Strategy). An
Observation-Based Strategy for Player 1 with memory Ω
is a pair 〈α, η〉, where α : Ω → Γ guides the next move
based on the memory contents, and η : Ω×O → Ω updates
the memory based on an observation. With Ω there is an
associated initial memory value ω0.

An infinite play p = v0, v1, . . . is consistent with strategy
〈α, η〉 if there is a sequence of memory values ω0, ω1, . . .,
such that for every i≥0, vi+1 ∈ δ(vi, α(ωi)) and ωi+1 =
η(ωi, L(vi+1)). That is, the next location is chosen according
to a move advised by α and the memory is updated accord-
ing to η given the observation at location vi+1. A strategy
〈α, η〉 is sure winning for Player 1 if all plays consistent with
〈α, η〉 are winning for her. Player 1 wins the game G if she
has a sure winning strategy for G.

A partial information game is solved by establishing
whether the game is won by Player 1. This is done by
converting G to a full-information game obtained by a
construction akin to the determinisation construction for
finite automata. This construction is many times referred
to as information based determinisation [16]. Essentially, the
construction summarizes the information that Player 1 has
regarding the location in the game that she could be at. If
she can win based on this information then she can win all
plays.

Note that the notion of imperfect information employed
is not as general as it might be, since the specification rep-
resented by the FLTL formula is expressed solely in terms
of information observable to the controller. This may seem
too restrictive and is indeed one of the current limitations of

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 10

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 5

our technique. However, from a software engineering point
of view, abstraction is an essential process used to deal with
the complexity of systems and requirements and, as in a
good API design, one makes a compromise about what to
expose in order to allow the resolution of objectives. Fur-
thermore, this simplification allows us to provide simpler
constructions that the one needed to deal with the general
problem that include the deduction of unobservable fluents
(e.g. [17]).

4 NON-DETERMINISTIC CONTROL PROBLEMS

In this section we define two control problems for environ-
ments described as non-deterministic LTS (with no internal
actions). In Section 5 we extend this result for partially ob-
servable environments. First we present a control problem
in which we require the solution to be a legal LTS. Then we
present a control problem in which we require the solution
to be a weak legal LTS.

4.1 Interface Automata Control
Definition 8 (IA ND LTS Control). Given a τ -free LTS
E, a set of controllable actions AC ⊆ AE , and an FLTL
formula ϕ, a solution for the IA non-deterministic LTS
control problem E = (E,ϕ,AC) is an LTS M such that M is
a legal LTS for E, E‖M is deadlock-free, and E‖M |= ϕ.

We refer to the solution of an IA non-deterministic LTS
control problem as an IA controller. If a controller exists
we say that the problem is realisable. It is unrealisable
otherwise.

Synthesis techniques for solving control problems for
non-deterministic environment models in the form of
Kripke structures have been studied for some time and
are not trivial. There are a number of difficulties to be
addressed. Dealing with the uncertainty of the exact state
of the environment is one shared by all techniques. In gen-
eral, this issue is addressed by modifying the environment
model, possibly extending its alphabet, and considering
some deterministic version of it. Typically, techniques that
work for safety goals apply classical determinisation [14],
considering the power set of states to capture all the possible
states the environment could be in after a non-deterministic
action. Accounting for the partition of the alphabet is usu-
ally done by including controllable actions allowed in all
the states in which the environment could be in, while
including uncontrollable actions available in at least one of
those states.

Unfortunately, when dealing with a partition of the
alphabet and more general goals, classical determinisation
does not work. For instance, consider the IA LTS control
problem E = (E,�♦u, {c}), where E is the environment
model in Fig. 3a and we abuse notation and use u as the
fluent induced by the label u – i.e. flu=({u}, A\{u}, false).
From state 0 in E there is a non-deterministic choice over
the uncontrollable action u that leads either to state 1 or 2.
As the goal for the controller is to guarantee infinitely many
u actions, if state 1 is reached the controller should disable c
to prevent the environment from reaching a deadlock. On
the other hand, if state 2 is reached the controller must
enable c to avoid deadlock, continuing to state 4 where

1
c //u

��

3

0

u

@@

u // 2
c // 4

u

bb

(a) E

{0} u // {1, 2} c //

u
{{

{3, 4}

u

ff

(b) det(E)

{0} u // {1, 2}
uvv ¯̀ // {1, 2} c // {3, 4}

u

hh
¯̀ // {3, 4}

(c) Ē

Fig. 3: Determinisation Example

the environment is forced to go back to state 0. As the
controller (when composed with the environment) cannot
identify the exact state the environment is in, it is impossible
to determine whether to enable or disable c. Thus, there is no
solution for E . However, classical determinisation yields the
LTS in Fig. 3b, which can be controlled by either disabling or
enabling c from state {1, 2}. Consequently, determinisation
must be revisited in the context of non-deterministic control
problems.

In order to synthesise IA controllers and preserve real-
isability a more sophisticated notion of determinisation is
required. We have to take into account that disallowing all
controlled actions may lead to a deadlock when composing
the resulting controller with the environment. In particular,
one needs to handle the case where no uncontrollable action
is enabled in some reachable state – i.e. pure controllable
states.

In Def. 9 we present the notion of Controlled Determinisa-
tion, which provides the basis for synthesising IA controllers
that guarantee satisfaction of its goals even in the presence
of non-determinism in the environment. Controlled deter-
minisation not only preserves realisability but also allows
for legal LTS controllers. As with classical determinisation,
in controlled determinisation states are subsets of the states
of the original LTS. However, the procedure determinises
the model distinguishing states according to their outgoing
actions (either controllable or uncontrollable) and discerns
them by marking the states with controllable actions.

Definition 9 (Controlled Determinisation). Given an
LTS E = (S,A,∆, s0), where AE = AC∪̇AU ,
we define the controlled deterministic version of E,
Ē = (Q̄, Ā, ∆̄, q0) as follows:
• Q̄ = 2S ∪ {q̄ | q ∈ 2S}
• Ā = A ∪ {¯̀} and ĀC = AC , with ¯̀ 6∈ A
• q0 = {s0}
• ∆̄ the transition relation:

∆̄ =
{
q
u→Ē ∆(q, u)

∣∣ ∃s∈q . u ∈ ∆(s) ∩AU
}
∪ (1){

q
¯̀
→Ē q̄

∣∣ ∃s∈q . ∆(s) ∩AU = ∅
}
∪ (2){

q̄
c→Ē ∆(q, c)

∣∣ ∀s∈q . c ∈ ∆(s) ∩AC
}

(3)

where ∆(q, `) = { s′ | s ∈ q ∧ s `→E s′} denotes the set
of states reachable from q after an `-transition.

Controlled determinisation yields a deterministic LTS
revising the original by adding a fresh action ¯̀ and states
with transitions over that action (see Fig. 3c). Note that

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 11

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

a state q ∈ Q̄ consists of subsets of S, which can be
either marked or unmarked. By (1) uncontrollable actions
are only possible from an unmarked state q, while by (3)
controllable actions are only available from a marked state
q̄. By (2) an ¯̀ transition exists between q and q̄ if and only
if there is at least one fully controllable state s in q, thus
q̄ is unreachable otherwise. This effectively partitions the
states of Ē in fully controllable states (i.e. marked) and
completely uncontrollable states (i.e. unmarked), and so if
a marked state is reached the controller must enable at least
one controllable action in order to avoid deadlock.

As a consequence of the separation of controllable and
uncontrollable states, controllable actions are pruned from
mixed states (states with both controllable and uncontrol-
lable actions), still we show that controllability is preserved.
Intuitively, mixed states represent a race condition between
the controller and the environment, which in the worst case
can always be won by the environment. Hence, if there is a
solution for the control problem it cannot rely on the result
of a race condition.

In order to synthesise controllers for the translated mod-
els it is necessary to change the FLTL formulas to ignore the
transition label ¯̀. We define the alphabetised next version of
ϕ, denoted X¯̀(ϕ), by replacing every sub-formula Xψ in ϕ
by X(¯̀UX¯̀(ψ)). Thus, this transformation replaces every
next operator occurring in the formula by an until operator
that skips the uninteresting action ¯̀.

Property 1. Given a trace π = `0, `1, . . . of an LTS E and an
FLTL formula ϕ, we have that for every trace π′ such that
when removing every occurrence of the label ¯̀ is equal to π,
it holds that π |= ϕ if and only if π′ |= X¯̀(ϕ).

Theorem 1 (Determinization Correctness). Given an IA
non-deterministic LTS control problem E=(E,ϕ,AC) and
its controlled deterministic version Ē=(Ē,X¯̀(ϕ), AC), E is
realizable if and only if Ē is realizable.

Note that Ē is a deterministic control problem, hence
event-based control synthesis algorithms can be applied.
However, in the worst case the number of states of the
deterministic problem can be exponentially larger than the
original non-deterministic problem. Notably a simple mod-
ification to the solution for the deterministic problem is
enough to control the analogous non-deterministic problem.
As exhibited in the proof (in the Appendix) the modification
consists of removing the spurious transition ¯̀.

4.2 Weak Interface Automata Control
Definition 10 (WIA ND LTS Control). Given a τ -free LTS
E, a set of controllable actions AC ⊆ AE , and an FLTL
formula ϕ, a solution for the WIA non-deterministic LTS
control problem E = (E,ϕ,AC) is an LTS M such that M
is weak legal for E (cf. Def. 3), E‖M is deadlock-free, and
E‖M |= ϕ.

We may refer to the solution of a WIA non-deterministic
LTS control problem as a WIA controller.

In Def. 11 we present a reduction from WIA control
problems to imperfect-information games [13].

Definition 11 (WIA to IIG). Given a WIA LTS control
problem E = (E,ϕ,AC), where E = (S,A,∆, s0) and

A = AC∪̇AU , we define the Imperfect-Information Game
GE = (V,O,Γ, δ, v0, L, F) as follows:
• O = A ∪ {λ}, observations
• V = (S × (A ∪ {λ})) ∪ {se}, locations
• Γ = 2AC , moves
• δ is the transition function:

δ =
{

(〈s, `〉, γ, se)
∣∣ γ∈Γ ∧∆(s) ⊆ AC\γ

}
∪{

(〈s, `〉, γ, 〈s′, `′〉)
∣∣ γ∈Γ ∧ s `′→E s′ ∧ `′∈AU∪γ

}
∪{

(se, γ, se)
∣∣ γ∈Γ

}
• v0 = 〈s0, λ〉, an initial location
• L : V → O is the labelling function:

L(v) =

{
` if v = 〈s, `〉
λ if v = se

• F = {`0, `1, `2, . . . | `1, `2, . . . |= ϕ}, the winning
condition. Observe that we remove the initial spurious
label `0 = λ and consider whether the sequence of
actions in the rest of the game satisfy the goal ϕ. In
particular, F does not contain sequences with λ and
hence forces not to reach the sink state se (avoiding to
stay in se forever).

We now provide an intuition on how the reduction
works, and why, although the resulting game may seem
very different from the original LTS, it captures the essence
of the original problem. An example of the transformation is
given in Fig. 4, in which for ease of representation we omit
transitions from deadlock locations to the sink location se.

Locations in GE are states of S decorated with actions
of A denoting the label of the transition that lead to them
in E. Observations match the label contained in a given
location. The transition function δ is designed to encode,
from every location, all possible choices for a controller of
E. Thus, moves in the game represent sets of controllable
actions. Recall that turns in imperfect-information games
proceed as follows: Player 1 (the controller) chooses a move,
then Player 2 (the environment) gets to choose which of the
possible target locations is reached – i.e. the environment
resolves the non-determinism. Therefore, in GE , Player 1
chooses some set of controllable actions γ to enable. Then,
Player 2 chooses the next location based on where one
of the offered controllable actions or some uncontrollable
action would lead to in E. From the perspective of Player 1,
this is non-deterministic as she offers a move and it is the
other player who chooses the destination. The encoding also
includes a fresh location se which symbolizes E reaching a
deadlock, including but not exclusively, the case in which
the controller decides to disable all controllable actions from
a fully controllable state.

Having defined the translation from a WIA control prob-
lem E to the imperfect-information game GE , we show
that there is a solution to E if and only if Player 1 (the
controller) can surely win GE . Preliminarily, we describe
how to translate a strategy to an LTS (Def. 12) and vice-versa
(Def. 13).

Definition 12 (Strategy to LTS). Given a WIA LTS con-
trol problem E=(E,ϕ,AC) and 〈α, η〉 an observation-based
strategy for GE with memory Ω. We construct an LTS
M = (TM , AM ,∆M , t0) solution for E , such that:

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 12

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 7

1

0

c
99

c //

c′ %%

2
u // 4

3 c′

99

(a) E

1, c

0, λ

{c}
11

{c′,c}

88

{c} **
{c′,c} 44

{c′}
--

{c′,c}
&&

∅
��

2, c

∅
��{c} **

{c′} 44
{c′,c}

__4, u

se 3, c′
{c′} ++
{c′,c} 33

{c}
bb ∅
ii 4, c′

(b) GE

Fig. 4: Example: LTS to IIG

• TM = Ω
• AM = AE
• t0 = w0

• ∆M = {w `→M w′ | ` ∈ α(w)∪AU ∧ w′ = η(w, `)}

Definition 13 (LTS to Strategy). Given a WIA LTS control
problem E=(E,ϕ,AC) and M = (TM , AM ,∆M , t0) a solu-
tion for E . We construct an observation-based strategy 〈α, η〉
with memory Ω for GE , where:
• Ω = 2TM

• w0 = {t0}
• α(w) =

⋃
t∈w

∆M (t) ∩AC

• η(w, `) =

{ ⋃
t∈w

∆M (t, `) if ∃t∈w .∆M (t, `) 6= ∅

w otherwise

Theorem 2 (WIA to IIG Correctness). Given a WIA
LTS control problem E=(E,ϕ,AC) and its corresponding
imperfect-information game GE , E is realisable if and only
if GE is surely-won by Player 1.

4.2.1 Optimising realisability
Solving a WIA non-deterministic LTS control problem in-
volves a sequence of reductions. First, the LTS environment
is converted to an imperfect-information game, which is
then converted to a full-information game. The first reduc-
tion causes an exponential explosion of the alphabet. The
second reduction causes an exponential explosion of the
number of states. We have found that in practice, the second
exponential explosion is restricted by the structure of the
LTS and is “well behaved”. The first exponential explosion,
on the other hand, occurs in all cases, and was a major
bottleneck in our implementation. However, we have added
an optimisation that circumvents the first exponential blow
up. The optimisation computes the best successor location
considering actions one by one and not exponentially many
sets of actions.

Fix an LTS E = (S,A,∆, s0), with A = AC∪̇AU . Let GE
be the imperfect-information game obtained fromE andGD
the full-information game obtained from GE . A location of
GD is a set of states of E. A move of GD is a subset of AC .
Given a location v ofGD , the set of possible successors using
a move γ ⊆ AC is the set of locations δ(v, γ). Note that the
successor of a location v of GD after a move consisting of
only one action ` is a single location v′, hence we abuse
notation and say that δ(v, `) = v′.

Consider the question of whether from a location of
GD Player 1 can choose a move that forces Player 2 to

choose a target location from a set V . We call the set of
such locations the control predecessor of V . Straightforwardly,
one can evaluate all moves in 2AC . However, this question
can be answered by considering the moves in AC one by
one. Suppose that for some set γ it holds that δ(v, γ) ⊆ V .
Consider that there exists an action c ∈ AC\γ such that
δ(v, c) ∈ V . Then, clearly δ(v, γ ∪ {c}) ⊆ V as well. Hence
actions can be considered one by one until finding the
maximal move γ ⊆ AC such that δ(v, γ) ⊆ V . Then, if for
some state s ∈ v we have ∆(s) ⊆ AC\γ, i.e., there is some
state in v for which no controllable action leads to V or there
is at least one uncontrollable action; then we say that v is not
in the control predecessor, otherwise it is. It follows that we
can compute the control predecessor considering the actions
in AC one by one and not the (exponentially many) sets in
2AC .

Finally we consider the computation of the best/worst
successor location. Let < be a linear order between locations
of GD , such that se is maximum. Let `1 < `2 < . . . < `n be
an ordering on A with respect to a location v established by
`i < `j if and only if δ(v, `i) < δ(v, `j). Take the maximum
action `i in AU and consider the set Ai = {`1, . . . , `i}. If for
every s ∈ v there exists 1 ≤ j ≤ i such that `j ∈ ∆(s), then
δ(v, `i) is the best possible worst successor for v. Otherwise,
letAk = {`1, . . . , `k} be the minimum set such thatAi ⊆ Ak
and for every s ∈ v there is 1 ≤ j ≤ k such that `j ∈ ∆(s).
Then, δ(v, `k) is the best possible worst successor for v. If
no such set exists then there is no way to avoid se from
v. It follows that we can compute the best possible worst
successor for v by sorting the set A according to the order <
and then consider linearly many subsets of AC .

5 PARTIALLY OBSERVABLE CONTROL PROBLEMS

In this section we present a reduction from control prob-
lems based on partially observable LTS environments to
non-deterministic LTS control problems. The reduction in
Def. 15 works by removing τ -transitions while capturing
the same behaviour by propagating non-determinism to
previous non-τ -transitions. This is necessary since a naive
reduction that only guarantees trace equivalence may not
preserve controllability, while stronger reductions may use
an unnecessarily large number of states.

Consider the LTS E depicted in Fig. 5a and a trace
equivalent reductionE† shown in Fig. 5b, i.e. a trace belongs
to E if and only if it also belongs to E†. For the control
problem E=(E†,�♦c2, {c1, c2}), we note that in E† there is
a choice between the controllable actions c1 and c2 in state
1, hence we may produce the controller C† presented in
Fig. 5c which is valid for E† but not for E since disabling c1
has the potential of creating a deadlock in E if the internal
action reaches state 2. ConsideringE† can make us reach the
conclusion that the problem is controllable when it is not.

On the other hand, if we apply standard τ -closure we
may obtain an LTS with unnecessary states, as in our exam-
ple E? shown in Fig. 5d, which has the unnecessary state 1.
While this translation preserves weak bisimilarity with the
original LTS, such restriction is too strong for controllability
purposes. We seek for a reduction producing an equivalent
τ -free LTS suitable for control. Thus, our reduction removes
states irrelevant to the target non-deterministic problem. In

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 13

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

0
u // 1

τ //

τ ��

2
c1 // 4

3
c2 // 5

c2

QQ

(a) E

0
u // 1

c1 //

c2 ��

4

5

c2

QQ

(b) E†

0
u // 1

c2

QQ

(c) C†

2
c1 // 4

0

u
55

u //

u))

1
c1

@@

c2

��
3 c2
// 5

c2

QQ

(d) E?

Fig. 5: Reduction variations

Def. 14 we identify conducing states, which are the states that
are relevant. Removing non-conducing states results in a
potentially smaller LTS better suited for further processing
(e.g. effectively dropping state 1 of E?).

Furthermore, standard τ -closure cannot eliminate τ -
transitions originating from the initial state. A special treat-
ment is needed in this case, since there are no previous
transition with which to capture the same behaviour via
non-determinism. In such cases we add fresh states and
labels in order to obtain a non-deterministic LTS compatible
for control (see Def. 16).

Finally, we also handle the cases where an LTS can enter
an infinite τ -loop, which could affect controllability. A τ -
loop models an environment capable of closing itself both
to observation and interaction. Such a scenario is considered
undesirable in this context, since it is indistinguishable from
a deadlock state. Thus, a fresh sink state is added by the
translation in order to create a deadlock in the presence
of τ -loops. In spite of that, if additional assumptions were
considered (e.g. fairness) some τ -loops could be benign.
This would give place to a different setting with potentially
other acceptable interaction models. Our approach could be
easily adjusted to accommodate to such requirements.

Definition 14 (Conducing State). Given an LTS E we say
that a state s ∈ SE is a conducing state – denoted cond(s) –
if and only if ∆E(s) 6= {τ}, or informally if it does not have
only τ -transitions. Observe that states with no τ -transitions
and deadlock states are conducing states.

By a slight abuse of notation we write cond(S) for the
subset of conducing states contained in S, that is, we also
use it as cond(S) = {s ∈ S | cond(s)}.

Definition 15 (τ -removal). Given an LTS E, we define its
τ -removed version Ê = (Ŝ, Â, ∆̂, s0) where:
• Ŝ = SE ∪ {se}, the states of E plus the fresh state se

used to create deadlocks in the presence of τ -loops
• Â = AE \ {τ}
• ∆̂ a transition relation that only reaches the conducing

states (for all ` ∈ Â):

∆̂ =
{
s

`→Ê s′
∣∣ s `⇒E s′ ∧ cond(s) ∧ cond(s′)

}
∪{

s
`→Ê se

∣∣ s `⇒E s′ ∧ s′ τ⇒E s′
}

2
τ ''

4
τ
gg

0
a // 1

b
@@

τ ��

5
τ // 7

3

c
@@

τ // 6

d

QQ

(a) E

1
c
�� d

��

b // se

0
a //

a 22

a
55

3
d
��

c // 7

6

d

QQ

(b) Ê

Fig. 6: τ -removal Example.

The definition of τ -removal produces a τ -free non-
deterministic LTS by introducing a step between conducing
states if there is a walk between them in the original LTS.
Additionally, a step into the sink state se is introduced from
a state that can walk into a τ -loop in the original LTS.

In Fig. 6 we show an example of the construction of
the translation for an LTS E (Fig. 6a). We denote conducing
states with round nodes and non-conducing states with square
nodes. To build Ê (Fig. 6b) we connect the walk-reachable
conducing states and add the state se to translate τ -loops into
deadlocks.

Observe that τ -removal exhibits two useful properties
formalised in following lemmas. Lemma 1 expresses that a
walk in an LTS E is substituted by a step in Ê. Lemma 2
extends this property for composed LTSs.

Lemma 1 (State Connectivity). A conducing state is reach-
able through a walk from another conducing state in an LTS
E if and only if it is reachable in a step in Ê, that is:

∀s, s′ ∈ cond(SE), ` ∈ AE\{τ} . s
`⇒E s′ ⇔ s

`→Ê s′

Lemma 2 (Composition State Connectivity). A state 〈s, t〉
of E‖M with s and t conducing, is reachable through a walk
from another such state if and only if it is also reachable in
a step in Ê‖M̂ , that is:

∀s, s′ ∈ cond(SE), t, t′ ∈ SM , ` ∈ AE\{τ} .
〈s, t〉 `⇒E‖M 〈s′, t′〉 ⇔ 〈s, t〉

l→Ê‖M̂ 〈s′, t′〉

To handle the case where there are τ -transitions in the
initial state we add a fresh action (µ) to capture the initial
non-deterministic behaviour, lost otherwise.

Definition 16 (µ-addition). Given an LTS E we define its
µ-added version Ĕ as follows

Ĕ = (SE∪{sµ}, AE∪{µ},∆E∪{(sµ, µ, s0)}, sµ)

Note that if π = `0, `1, . . . is a trace of E then π′ =
µ, `0, `1, . . . is a trace of Ĕ. Furthermore, π |= ϕ if and only
if π′ |= Xϕ, that is, the next operator effectively ignores the
initial action µ.

5.1 Interface Automata Control

Here we define a control problem for settings with partial
observability and the IA interaction model.

Definition 17 (WIA PO LTS Control). Given an LTSE, a set
of controllable actions AC ⊆ AE\τ , and an FLTL formula
ϕ, a solution for the IA partially observable LTS control

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 14

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 9

problem E=(E,ϕ,AC) is an LTS M such that M is a legal
LTS for E (cf. Def. 4), E‖M is deadlock-free, and E‖M |= ϕ
with no possible τ -loop.

Theorem 3 (IA Compatibility under τ -removal). An IA
partially observable LTS control problem E=(E,ϕ,AC) is
realizable if and only if the IA non-deterministic LTS control

problem Ê=(
ˆ̆
E,Xϕ,AC) is realizable.

We now present the intuition of the proof. We first es-
tablish the compatibility under the simplifying assumption
that there are no τ -transitions from the initial state, and then
relax the assumption.

For the first part we use Lemmas 1 and 2 in order to
show that a controller M is a solution for a problem with
an environment E and its τ -removed version Ê. In essence,
using Lemma 2 we can replace steps in E‖M with walks in
Ê‖M and vice versa. Hence a trace is in E‖M if and only if
is also in Ê‖M . We show that for similar reasons M avoids
deadlocks, has no possible τ -loop and is legal with respect
to E and Ê.

For the second part we show how the fresh initial action
µ, added in order to guarantee that the initial state has no
τ -transitions (c.f. Def. 16), can be safely ignored. This is
achieved with a slight modification of the goal to accept
the initial µ. Note that the environment considered in the
control problem Ê is extended with the fresh action µ and

then stripped from τ labels (i.e. ˆ̆
E).

5.2 Weak Interface Automata Control

We definite a control problem for a setting with partial
observability and the WIA interaction model.

Definition 18 (WIA PO LTS Control). Given an LTSE, a set
of controllable actions AC ⊆ AE\τ , and an FLTL formula
ϕ, a solution for the WIA partially observable LTS control
problem E=(E,ϕ,AC) is an LTS M such that M is weak
legal for E (cf. Def. 3), E‖M is deadlock-free, and E‖M |= ϕ
with no possible τ -loop.

Theorem 4 (WIA compatibility under τ -removal). A WIA
partially observable LTS control problem E=(E,ϕ,AC) is
realizable if and only if the WIA non-deterministic LTS

control problem Ê=(
ˆ̆
E,Xϕ,AC) is realizable.

The proof follows that of Theorem 3 considering that the
controller must be weak legal instead of legal.

5.3 Algorithm

Now we present an algorithm for computing the τ -removal
of an LTS E = (S,A,∆, s0) to a τ -free non-deterministic
LTS. The computation of walks in E has the flavour of
computing the transitive closure of a transition relation.
However, we show that it is simpler as τ -loops lead to
uncontrollability and thus report this optimization. The
procedure is presented in three simple routines and assumes
that there are no τ -transitions from the initial state, which
can be satisfied by µ-addition (cf. Def. 16).

The procedure τ-reach computes the set of conducing
states reachable after zero or more τ -transitions from each
state. The function uses a table (named taus) to store and

τ-reach()
taus = empty-map
foreach s in S

τ-reach-recursive(s, taus)
return taus

where τ-reach-recursive(s, taus)
result = taus[s]
if result 6= null

return result
taus[s] = {incomplete}
result = ∅
foreach s′ such that s

τ→E s′

reachable = τ-reach-recursive(s′, taus)
if incomplete ∈ reachable ∨ se ∈ reachable

result = {se}
break

else
result = result ∪ reachable

if conducing(s) ∧ se 6∈ result
result = result ∪ {s}

taus[s] = result
return result

reuse the results of the computation. Each iteration only
considers states reachable in one step and works recursively
over them. A special symbol (called incomplete) is intro-
duced into the table to indicate that the computation for a
given state is in progress, this is used to detect τ -loops in
which case the τ -reachable set is replaced with the special
state se. This is an optimization that allows avoiding the
computation of the complete transitive closure, since valid
controllers must avoid deadlock and hence disregard non-
deterministic transitions that reach at least one deadlock
state.

Observe that thanks to the storage of the results for every
state and the fact that τ -loops are cut out as soon as they are
found, computing τ-reach for every state of E turns out to
be linear on the number of transitions. In other words, the
worst-case complexity for computing τ-reach for all the
states of E together is O(|∆|).

The walk-reach routine builds a table with all the
reachable conducing states after a walk (i.e.; zero or more τ -
transitions, followed by exactly one non-τ -step and ending
again with zero or more τ -transitions). The routine first
invokes τ-reach and then computes the walk-reachable
states in O(|∆| × |S|).

Finally the τ-removal function returns the translated
non-deterministic LTS with no τ -transitions. The algorithm
works by first building the table of walks and then creating
a one step transition for every valid walk in the original
LTS. The procedure τ-removal has an overall worst-case
complexity of O(|∆| × |S|).

6 EVALUATION

In this section we report on two case studies taken from
domains in which controller synthesis techniques have been
previously applied with fully observable deterministic envi-
ronments. Case studies were selected to exemplify synthesis
for both interaction models discussed in this paper. The
first case study is taken from a service oriented architecture

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 15

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

walk-reach()
taus = τ-reach()
steps = empty-map
foreach s in S

steps[s] = ∅
foreach ` in ∆(s)\{τ}

foreach s′ such that s
`→E s′

foreach d in taus[s′]
steps[s] = steps[s] ∪ {〈`, d〉}

walks = empty-map
foreach s in S such that conducing(s)

walks[s] = steps[s]
foreach s∗ in taus[s]

walks[s] = walks[s] ∪ steps[s∗]
return walks

τ-removal()
∆′ = ∅
walks = walk-reach()
foreach s in S such that conducing(s)

foreach 〈`, s′〉 in walks[s]
∆′ = ∆′ ∪ {〈s, `, s′〉}

return (S,A,∆′, s0)

setting inspired by [5], [18], [19], where it is reasonable
to assume that there is a handshake mechanism between
the intervening components. We extend this case study
to account for service variability, thus introducing partial
observability. The second case study is a physical intrusion
detection system, where the whereabouts of an intruder
may be unknown. Note that, in general, in cyber-physical
systems it is not sensible to presume a handshake between
environment and actuators.

We present these case studies as proof of concept that
shows the flexibility of the technique for problem domains
with different interaction models. In other words, we aim to
highlight the advantage that controller synthesis provides as
a generic and fully automated method for constructing com-
ponents that guarantee system goals even in the presence of
non-determinism and partial observability. The generality
and full automation, of course, comes at a cost in complexity
which has been discussed above. In that respect, scalability
is not the focus of the current validation.

Both case studies were analysed using our tool – MTSA1

[20] – which accepts a textual representation of the LTS
model and FLTL goals given in the Finite State Processes
modelling language (FSP). Technically, FSP is a process
calculus designed to be easily machine and human read-
able that includes standard constructs such as action prefix
(->), external choice (|), label prefixing (:), hiding (\) and
parallel composition (||). A thorough explanation can be
found in the MTSA documentation. The computer used for
the evaluation is an Intel i7-3770 with 8GB of RAM.

6.1 Travel Agency Service Orchestration

This case study deals with an implementation in a service
oriented architecture for a travel agency. The agency sells

1. Available at https://bitbucket.org/dciolek/mtsa

vacation packages on-line by orchestrating existing third-
party individual web-services for car rental, flight purchase
and hotel booking. The aim is to synthesize an orchestrator
based on the requirements for the provision of vacation
packages and the protocol specification of the web-services.

Service oriented architectures provide a number of ab-
straction layers which can support a communication model
based on handshakes. For instance, the Business Process
Execution Language (BPEL) offers a rendezvous interaction
mechanism when request-response operations are used. In-
deed, CSP style composition semantics is commonly used as
an abstraction for web-service orchestration (e.g. [21]). Thus,
it is reasonable to interpret the composition of the controller
and the web-services in a handshake communication model
for which WIA control synthesis is adequate.

We now continue with the details of the case study,
explaining the agency’s requirements and the behaviour
of the independent services the agency may interact with.
The agency receives requests for vacation packages and
interacts with different providers of cars, flights and hotel
reservations to fulfil them. The protocols for the services
may vary, one variant is the number of steps required for
querying availability; in some cases the process requires
a second step (e.g. querying for flight destination and
dates, and if successful following with a selection for class).
Another variant in service protocols is that some services
may require a reservation step which guarantees a purchase
order for a short period, while others do not, and hence
the purchase may fail (e.g. on low availability reservation
may be disabled in order to maximize concurrency between
clients. As a result a race condition between two purchase
orders may arise, and therefore one order will fail).

Protocol variability depends on internal decisions of
each independent service, hence invisible to the coordinator.
However, the underlying handshake mechanism allows for
valid interactions. Since the LTS of a service is not easy to
depict, in Fig. 7 we show the FSP specification of a generic
service. Note that internal actions are hidden through the
use of the operator (\). That is, we use internal actions in
order to create a fitting specification, and later we hide these
actions to prevent the controller from monitoring them.

In summary, the Service waits for a query and continues
according to the result. If unavailable it reports a failure
and becomes idle again. If a single result is found it reports
success and continues with the booking step. If multiple
results are found it reports success and move towards a
more detailed selection. On the booking step the Service
decides between committing to allow reservations or requir-
ing a direct purchase order. Furthermore, the session can be
terminated through the cancel action. From the controller’s
point of view all the non-hidden actions are controllable
except for the reporting of failures and successes which are
only observable.

In FSP the expression that builds an environment with
services for car, flight and hotel booking can be seen in Fig. 8.
Observe that we prefix the generic Service with the names
of particular services which prefixes every action of the LTS.
Thus, car .query represents a query for car rental.

The agency receives clients requests (agency .request)
and must interact with the web-services in order to build the
vacation package if possible. In the case that all services are

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 16

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 11

Service = (
query -> (
unavailable-> query.failure -> Service |
single -> query.success -> Booking |
multiple -> query.success -> Selection)),

Selection = (select -> Booking),
Booking = (committed -> Reserve |

uncommitted -> Direct),
Reserve = (reserve -> (

cancel -> Service |
purchase ->
purchase.success -> Service)),

Direct = (order -> (
cancel -> Service |
purchase -> (
purchase.success -> Service |
purchase.failure -> Service)))

\{unavailable, single, multiple,
committed, uncommitted}.

Fig. 7: Generic Service model

||Services = {car,hotel,flight}:Service.

Fig. 8: Services environment

available for the required date the agency should hire them
and report success (agency .success). Otherwise it should
report failure (agency .failure). Additionally, on a failure no
service should be paid for. Hence, given that direct purchase
orders may fail, we must also allow the agency to report a
failure when it is uncertain about two or more purchase
orders (i.e. reservation not offered by at least two services).

To formalize the goals we use the following fluents:
(a) agency .response that captures if the agency has is-

sued a response for the last request, set to true on
either agency .success or agency .failure and to false on
agency .request

(b) service.hire that captures if a given service has been
paid for the current request, set to true on service.
purchase.success and to false on agency .request

(c) service.unavailable that captures if a given service is
unavailable for the current request, set to true on
service.query .failure or service.purchase.failure and to
false on agency .request

(d) service.uncertain that captures if a given service does
not provide a reservation step and thus its purchase
may fail, set to true on service.order and to false on
agency .request

We now formalize in FLTL the agency’s requirements
needed to guarantee the desired goal:
• If successful, services of all kinds are hired:
∀s ∈ Services . �(agency .success ⇒ s.hired)

• If unsuccessful no service is purchased:
�(agency .failure ⇒ ¬∃s ∈ Services . s.hired)

• If unsuccessful at least one service is unavailable or
more than one purchase is uncertain:
�(agency .failure ⇒
∃s, s′ ∈ Services . s.unavailable ∨
(s 6= s′ ∧ s.uncertain ∧ s ′.uncertain))

• Perform only one query to each service per request:
∀s ∈ Services .

s.query ⇒ X(�(¬s.query W agency .response))

• Every request must be replied to:
�♦agency .request ⇒ �♦agency .response

Observe that the last requirement requires the system to
be live, while the rest only require the system to be safe. In
particular the liveness goal belongs to the General Reactivity
1 class (GR(1) [22]), hence the resulting game can be solved
in quadratic time. Notably the specification is succinct and
declarative. The model captures the desired behaviour in
part thanks to an abstraction of the communication mecha-
nism. We have synthesised controllers for several different
versions of this case study simply by changing the services
considered in the environment.

For the services considered in Fig. 8 the composition of
the environment gives an LTS with 4394 states. Then the
translation to an imperfect information game yields a game
with 5194 states. Note that this is, in the worst case, an
exponential step. The states of the game are sets of states
of the original LTS. However, the number of game states
grow moderately. Finally, a winning strategy for the game is
translated to a controller with 301 states. The whole process
takes approximately one minute.

The synthesized controller is not trivial. It deals with
the non-determinism that arises from partial observability.
Specifically, after a successful query, the controller enables
selection, reservation and direct order. Depending on the
queried service some actions may be enabled and the result-
ing composition only allows interaction on those options.
At the controller enactment level this would be akin to at-
tempting a rendezvous style communication. Interestingly,
the controller delays payment until all services are assured,
that is, it has a reservation. In the case that it reserved
two services but the third requires direct purchase it first
attempts to secure the uncertain order. If the purchase fails,
it cancels the reservations and reports a failure to the user.
Furthermore, in the case that more than two services require
direct purchase, it does not attempt any and returns a
failure. Indeed, should the controller succeed in paying the
first service but fail to pay the second the goal would not be
achieved.

Summarising, we have discussed how the orchestration
for a service oriented architecture setting that includes par-
tial observability can be constructed automatically through
controller synthesis. The advantage that controller synthesis
provides is a generic and fully automated method for con-
structing the orchestrations from declarative specifications.
The generality and full automation comes at a cost in
complexity that may hinder scalability, for example if more
types of services were needed.

6.2 Intrusion Detection System
In a physical security system for a warehouse, robotic sen-
tries that can observe and move along corridors need to
use a sophisticated search strategy to pinpoint, surround
and capture a moving intruder that attempts to hide behind
warehouse racks. The strategy requires reducing the possi-
ble locations of the intruder by observing down corridors
and moving into the area where the intruder is suspected

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 17

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Sentry =(alarm -> Active[0]),
Active[s:Area] = (
foreach [d:Area]
when (Adjacent(s,d)||s==d) patrol[d] ->
sense[d][Hint] -> (
guard -> Active[d] |
capture[d] -> Sentry)).

Fig. 9: Sentry model

Intruder =(enter[i:Area] -> alarm -> Evade[i]),
Evade[i:Area] = (
sense[s:Area][InLine(s,i)] -> Evade[i] |
capture[i] -> Intruder |
guard -> (foreach [d:Area]
when (Adjacent(i,d)) move[d] -> Evade[d]))

\{enter[Area],move[Area]}.

Fig. 10: Intruder model

to be without letting it move back into a secured area. In
this scenario, partial observability is introduced not only
because of the unknown initial position of the intruder but
also because its location can change to an unknown location
after moving.

The warehouse is divided into nine areas organized as a
square grid, we use an adjacency matrix to model the valid
movements for the to-be-controlled sentry. An intruder is
expected to break into the facility and move as well. For
simplicity, we assume that intruder and sentry move at
similar speeds. The goal is to keep the warehouse secured,
that is to capture the intruder by positioning the sentry close
enough.

In Fig. 9 we present the FSP fragment that models the
behaviour of a sentry. Upon activation of an alarm the
sentry starts working from an initial location. The sentry can
patrol to an adjacent area where it can sense the direction
of the intruder, if it is in the same area, or nothing if out
of sight (i.e. six possible hints). Afterwards it can continue
to guard or attempt to capture the intruder. In the figure
Adjacent is an expression that returns whether two locations
are adjacent or not, areas and hints are represented with
consecutive numbers starting in zero.

Fig. 10 models the behaviour of the intruder. The in-
truder can enter the warehouse at some location, doing
so activates an alarm . Once inside it moves through the
corridors until captured . When in line with the sentry it is
detected by its sensors. Observe that the enter and move
actions are hidden, thus introducing partial observability. In
the figure InLine is an expression that returns the direction
of a location s with respect to another one i, or whether s is
equals to i, or out-of-sight if they are not in the same row or
column.

The goal in this case study can be expressed with the
following FLTL formula:

�♦alarm ⇒ �♦capture

Before attempting to synthesise a controller for the sen-
try, it is necessary to determine the proper interaction model.
To this end, a relevant question is whether it is correct for

the controller to attempt to patrol or capture when uncertain
about the current state of the warehouse. Can we assume
that when enacting the sentry’s controller, there will be a
negotiation or handshake with the environment on whether
the action is allowed or not? Indeed, this cannot be assumed.
Commanding the sentry to move will execute code that will
attempt to move the sentry despite whether this attempt will
succeed or not, whether the sentry will end up crashing into
a wall and breaking, or not. Similarly, we cannot assume
a cordial protocol between the sentry and the intruder to
decide if the capture action will be successful. Hence, we
can conclude that the IA interaction model better captures
the real mechanics of this system (as it is the case for most
cyber-physical domains).

Armed with the partially observable model, the goal
specification and the interaction model, we seek for a con-
troller applying the corresponding algorithm. Surprisingly,
executing the synthesis procedure returns that no controller
exists. Closer inspection reveals that there is a strategy for
the intruder such that it can evade the sentry indefinitely,
thus no sure winning strategy exists.

The reason there is no strategy for the sentry is threefold:
i) the sentry cannot reduce uncertainty regarding where

the intruder is. Even if the sentry while moving around
happens to detect the intruder along a corridor (e.g.
column i), the intruder can move out of sight into
corridor i − 1 or i + 1, thus the sentry cannot start
establishing a secure area (an area it knows that the
intruder cannot be in)

ii) the sentry cannot run the intruder down as they move
at the same speed

iii) the sentry cannot (alone) trap the intruder because ev-
ery location has at least two escape routes (the corners
have two, other location have more).

However, it is simple to check if adding more sentries
makes the goal realisable. In fact, just adding a second sentry
in the model allows synthesising a controller which can be
thought of as a centralised controller that coordinates both
sentries in order to keep the area secured. The difference
with the single sentry case is that two collaborative sentries
can corner the intruder independently of its initial position
and movements. The synthesized strategy for this setting is
far from trivial: The sentries must coordinate viewing down
adjacent corridors moving from one corner to the opposite,
this ensures building up a secure area while closing down
on the intruder. The fact that for each movement of the
intruder there are two movements of the sentries (one each)
is also key.

The composition of Intruder and Sentries for the ware-
house with nine areas gives an LTS with 56278 states.
However, applying a standard LTS minimization procedure
the number of states reduces to 2926, which is better suited
for synthesis given that it is exponential on the number of
states. After applying controlled determinization we obtain a
deterministic LTS control problem with 7084 states. A sure
winning strategy for the corresponding game is translated
to a controller with 208 states. The whole process takes
approximately three minutes.

Note that the generality of the technique allows modify-
ing the model and goals as needed. In contrast to hand made
controllers that need to be rewritten manually when the

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 18

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 13

context or requirements change. Indeed, migrating a man-
ually crafted controller for a single sentry to a centralized
controller for the coordination of two sentries would require
major modifications. In fact, the flexibility of the model is
even greater, since it accepts as input every possible topol-
ogy (varying the Valid and InLine functions). However, not
every layout can be secured by two sentries.

Summarising, we have discussed how the strategy for
a cyber-physical system that must deal with partial ob-
servability can be constructed automatically. Notably, the
same algorithm can be used to generate controllers for
different variations of warehouse structures and number of
sentries. As with the previous case study, the generality and
flexibility of the approach comes at a cost in complexity.
Controllers could also be built by hand for a specific layout,
but such controllers would have to be manually tweaked
upon a change to the specification. We believe that in gen-
eral the difficulty of adapting the model to a change in the
specification is significantly lower than manually devising a
new controller to deal with the same change.

7 DISCUSSION AND RELATED WORK

Synthesis of operational strategies in the form of LTS for
achieving declaratively specified goals has been studied and
applied in various forms (e.g. [3], [4], [5], [18], [19]). How-
ever, few techniques can handle general liveness goals and
partially observable environments. In this paper we study
this combination and show that the underlying interaction
model is key for appropriately choosing the synthesis tech-
nique. We based this approach on our previous work [23] in
which determinism and full-observability were required.

As shown in Section 5 partial observation and non-
determinism are closely related challenges. Most of the work
on this aspect is based on Kripke structures ([24], [25]).
In [24] the authors focus on the compositional synthesis of
a reactive controller under partial observability, but only for
safety properties. Technically speaking the approach boils
down into safety imperfect-information games ([25]).

A noteworthy line of work is that of [1]. Safety properties
and bounded-liveness are used as goals in an LTS-like
framework. The technique assumes input-enabledness, still
the resulting controller is legal in the sense of interface
automata. A standard determinisation algorithm is used
and hence, as discussed in Section 4, it is not adequate for
general liveness goals.

In the area of supervisory control for Discrete Event
Systems only an interaction model similar to the weak
interface automata setting is studied. For treating liveness
goals, supervisory controller synthesis literature commonly
represents the “legal” specification language as a determin-
istic Rabin automaton. The problem of synthesis boils down
to force that automata to accepts its language [26]. This
disallows the use of adhoc procedures for logic fragments
like we do for GR [22].

A compositional approach for dealing with safety and
co-safety goals in a partially observed environment is
presented in [27], the approach assumes as input non-
deterministic automata. The technique looks for “most gen-
eral” strategies for each component, such that when com-
posed the crossed restrictions do not prevent the realization

of the goals. Since a compositional treatment is performed
the technique promises to attain superior scalability com-
pared to our approach. However, additional constraints (e.g.
fairness) need to be assumed to guarantee completeness.

The confluence of partial observability and liveness in
supervisory control synthesis can be found in [17]; there the
problem of synthesis under partial observability is reduced
to that of complete observation for general ω-regular speci-
fications, that may depend on actions not observable by the
controller. Then procedures like the ones presented in [26]
are invoked. This construction circumvents one limitation
of our technique allowing goals to be expressed in terms
of hidden actions. Unfortunately, there is no tool available
and the end-to-end complexity and completeness is unclear
given that the formal constructions are rather involved.

In [28] supervisors for CTL* specifications are generated
assuming complete observability. Whereas in [29] CTL*
synthesis (considering particular cases for CLT and LTL) is
solved considering partial observability by using alternating
tree automata. The approaches are based on a reduction
to satisfiability of a CTL* specification which may produce
a non-deterministic supervisor. In [30] a similar approach
based on alternating tree automata is presented considering
a partially observable version of µ-calculus. These tech-
niques do not accept LTS-like models, but instead work on
a shared signal setting for which the impact of interaction
models has not been analyzed.

Supervisory control has recently been restated in a
process-algebraic setting (e.g., [31]). In this setting the con-
trol requirements are given as the satisfaction of a bisim-
ulation relation against some process that represents the
expected behaviour. We point out that the notion of bisim-
ulation is, in general, too strong. In fact, the reduction pre-
sented in this paper does not produce a bisimilar model, yet
we prove it preserves controllability. Actually, our reduction
abides to the weaker notion of testing equivalence [32].

Summarizing, the synthesis of operational strategies
with partially observable environments and general live-
ness goals is a problem with many facets. In this paper
we present two novel contributions absent in the related
literature. The first is a simple reduction from partially
observable LTS control to non-deterministic LTS control,
proven to preserve controllability. The second is the iden-
tification of different interaction models that may impact
on the realizability of the goals. However, our technique
also exhibits two appreciable limitations. The first is that we
cannot express goals in terms of hidden actions. The second,
one shared by most approaches, is scalability.

8 CONCLUSIONS AND FUTURE WORK

In this paper we present a solution to the automatic syn-
thesis of controllers under non-deterministic and partially
observable LTS environments for general FLTL goals. The
problem differs from fully observable LTS control in that
the exact state of the environment may be unknown. Our
solution consist of a careful reduction to non-deterministic
LTS environments, proven to preserve controllability.

Our technique admits general FLTL goals and assump-
tions restricted to fluents defined for visible actions, which
allows for a simpler technical solution to that of related

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 19

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

works. The question of how the approach can be extended in
order to support goals and assumptions over hidden actions
has no immediate answer. The resulting control problem
would need to, not only reduce uncertainty about the state
of the environment, but also infer the value of unobservable
fluents if possible. We leave this point open and intend to
provide an answer in forthcoming studies.

We also report how different event-based interaction
models impact on the LTS controller synthesis problem in
the contexts of partial observability and non-determinism.
We show that IA control problems can be solved by means
of a carefully crafted determinisation – controlled determin-
isation. On the other hand, WIA control is solved by a trans-
lation to Imperfect-Information Games. These settings have
different capabilities for reducing uncertainty about the state
of the environment, which affects realizability. Hence it
is important to determine the precise setting for a given
problem and utilize a suitable algorithmic solution. Another
avenue for future research includes exploring algorithmic
solutions with better scalability.

The impact of interaction models on control problems
remains a vastly unexplored area that we believe will lead
to diverse synthesis techniques and relevant software engi-
neering insights. In particular, the WIA interaction model is
a weaker version of the IA interaction model that naturally
arises while abstracting a handshaking mechanism. Other
potential sources of interaction models could be found
both in coordination models such as session types or con-
tracts [33], [34] and in software architectures models like
connector types (e.g. [35]).

REFERENCES

[1] E. Letier and W. Heaven, “Requirements Modelling by Synthesis
of Deontic Input-output Automata,” in Proc. of the 2013 Int. Conf.
on Software Engineering, ser. ICSE ’13. IEEE Press, 2013.

[2] M. Jackson, Software Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices. ACM Press/Addison-Wesley
Publishing Co., 1995.

[3] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Syn-
thesizing Nonanomalous Event-based Controllers for Liveness
Goals,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 1, 2013.

[4] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “Software Engineer-
ing for Self-Adaptive Systems,” B. H. Cheng, R. Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer-Verlag, 2009, ch. A Case
Study in Goal-Driven Architectural Adaptation.

[5] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso,
“Planning and Monitoring Web Service Composition,” in Arti-
ficial Intelligence: Methodology, Systems, and Applications, ser. Lec-
ture Notes in Computer Science, C. Bussler and D. Fensel, Eds.
Springer Berlin, 2004, vol. 3192.

[6] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar,
“Synthesis of Reactive(1) Designs,” J. Comput. Syst. Sci., vol. 78,
no. 3, 2012.

[7] D. Giannakopoulou and J. Magee, “Fluent Model Checking for
Event-based Systems,” in Proc. of the 9th European Software Engi-
neering Conf. Held Jointly with 11th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering, ser. ESEC/FSE-11. ACM, 2003.

[8] A. Van Lamsweerde, “Goal-Oriented Requirements Engineering:
A Guided Tour,” in Proc. of the 5th IEEE Int. Symp. on Requirements
Engineering, ser. RE ’01. IEEE Computer Society, 2001.

[9] C. A. R. Hoare, “Communicating Sequential Processes,” Commun.
ACM, vol. 21, no. 8, 1978.

[10] L. de Alfaro and T. A. Henzinger, “Interface Automata,” in Proc.
of the 8th European Software Engineering Conf. Held Jointly with 9th
ACM SIGSOFT Int. Symp. on Foundations of Software Engineering,
ser. ESEC/FSE-9. ACM, 2001.

[11] K. Bierhoff and J. Aldrich, “Lightweight Object Specification with
Typestates,” in Proc. of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering, ser. ESEC/FSE-13. ACM, 2005.

[12] G. D. Caso, V. Braberman, D. Garbervetsky, and S. Uchitel,
“Enabledness-based Program Abstractions for Behavior Valida-
tion,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, 2013.

[13] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A.
Henzinger, “Strategy Construction for Parity Games with Imper-
fect Information,” Inf. Comput., vol. 208, no. 10, 2010.

[14] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[15] R. M. Keller, “Formal Verification of Parallel Programs,” Commun.
ACM, vol. 19, no. 7, 1976.

[16] J. H. Reif, “Universal Games of Incomplete Information,” in Proc.
of the 11th Annual ACM Symp. on Theory of Computing, ser. STOC
’79. ACM, 1979.

[17] J. G. Thistle and H. M. Lamouchi, “Effective Control Synthesis
for Partially Observed Discrete-Event Systems,” SIAM J. Control
Optim., vol. 48, no. 3, 2009.

[18] P. Inverardi and M. Tivoli, “A Reuse-based Approach to the Cor-
rect and Automatic Composition of Web-services,” in Int. Workshop
on Engineering of Software Services for Pervasive Environments: In
Conjunction with the 6th ESEC/FSE Joint Meeting, ser. ESSPE ’07.
ACM, 2007.

[19] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthe-
sis of Live Behaviour Models for Fallible Domains,” in Proc. of the
33rd Int. Conf. on Software Engineering, ser. ICSE ’11. ACM, 2011.

[20] N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel, “MTSA:
The Modal Transition System Analyser,” in Proc. of the 23rd
IEEE/ACM Int. Conf. on Automated Software Engineering, ser. ASE
’08. IEEE Computer Society, 2008.

[21] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based
Verification of Web Service Compositions,” in ASE, 2003.

[22] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1)
Designs,” in Proc. of the 7th Int. Conf. on Verification, Model Checking
and Abstract Interpretation, vol. 3855. Springer-Verlag, 2006.

[23] N. R. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel,
“Synthesis of Live Behaviour Models,” in Proc. of the 18th ACM
SIGSOFT Int. Symp. on Foundations of Software Engineering, ser. FSE
’10. ACM, 2010.

[24] W. Kuijper and J. Pol, “Compositional Control Synthesis for
Partially Observable Systems,” in Proc. of the 20th Int. Conf. on
Concurrency Theory, ser. CONCUR 2009. Springer-Verlag, 2009.

[25] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment
Assumptions for Synthesis,” in Proc. of the 19th Int. Conf. on
Concurrency Theory, ser. CONCUR ’08. Springer-Verlag, 2008.

[26] J. G. Thistle and W. M. Wonham, “Control of Infinite Behavior of
Finite Automata,” SIAM J. Control Optim., vol. 32, no. 4, 1994.

[27] J. Klein, C. Baier, and S. Klüppelholz, “Compositional Construc-
tion of Most General Controllers,” Acta Inf., vol. 52, no. 4-5, 2015.

[28] S. Jiang and R. Kumar, “Supervisory Control of Discrete Event
Systems with CTL* Temporal Logic Specifications,” SIAM J. Con-
trol Optim., vol. 44, no. 6, 2006.

[29] O. Kupferman and M. Y. Vardi, Advances in Temporal Logic.
Springer Netherlands, 2000, ch. Synthesis with Incomplete Infor-
matio.

[30] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for Synthe-
sis of Controllers with Partial Observation,” Theoretical computer
science, vol. 303, no. 1, 2003.

[31] J. C. M. Baeten, B. van Beek, A. van Hulst, and J. Markovski, “A
Process Algebra for Supervisory Coordination,” in PACO, 2011.

[32] R. De Nicola and M. C. Hennessy, “Testing equivalences for
processes,” Theoretical computer science, vol. 34, no. 1, 1984.

[33] K. Honda, V. T. Vasconcelos, and M. Kubo, “Language Primitives
and Type Discipline for Structured Communication-Based Pro-
gramming,” in Proc. of the 7th European Symp. on Programming:
Programming Languages and Systems, ser. ESOP ’98. Springer-
Verlag, 1998.

[34] G. Castagna, N. Gesbert, and L. Padovani, “A Theory of Contracts
for Web Services,” ACM Trans. Program. Lang. Syst., vol. 31, no. 5,
2009.

[35] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a Taxon-
omy of Software Connectors,” in Proc. of the 22nd Int. Conf. on
Software Engineering, ser. ICSE ’00. ACM, 2000.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 20

CIOLEK et al.: INTERACTION MODELS AND AUTOMATED CONTROL UNDER PARTIAL OBSERVABLE ENVIRONMENTS 15

Victor Braberman holds a Professorship at the
Department of Computing, FCEN, Universidad
de Buenos Aires and he is a CONICET re-
searcher working in the area of Software En-
gineering. He has headed the development of
tools for the modelling and analysis of software
intensive systems. His publication track record
includes regular publications in the top Software
Engineering conferences and journals. He has
served as PC member for flagship conferences
several times during the past 10 years. He acted

as coordinator for the CS grant proposal evaluation process at the
Argentinean research funding agency. He has a significant industrial
experience as a consultant and leads R&D projects for local software
companies.

Daniel Ciolek is a Phd. Student in Com-
puter Science at the Department of Comput-
ing, FCEN, Universidad de Buenos Aires, where
he also recieved his undergraduate Computer
Science degree. His research is focused to-
wards the application of artificial intelligence
techniques to software engineering problems.

Nicolás D’Ippolito is a Professor at Univer-
sidad de Buenos Aires and a CONICET re-
searcher. He received his undergraduate Com-
puter Science degree from University of Buenos
Aires and his PhD in Computing from Impe-
rial College London. His research interests fall
in multiple areas Control Theory, Software En-
gineering, Adaptive Systems, Model Checking
and Robotics. Specifically, he is interested in
behaviour modelling, analysis and synthesis ap-
plied to requirements engineering, adaptive and

autonomous systems, software architectures design, validation and
verification. Dr. D’Ippolito regularly publishes in top conferences and
journals in many areas. He has served as PC member for flagship
conferences a number of times and has organised many events in top
venues.

Nir Piterman received his Ph.D. in Computer
Science from the Weizmann Institute of Science.
He is currently Reader at the department of
Computer Science in the University of Leices-
ter. His research focuses on formal verification
and automata theory. In particular he works on
model checking, temporal logic, synthesis, game
solving, and applications of formal methods to
biological modelling.

Sebastián Uchitel is a Professor at University of
Buenos Aires, a CONICET researcher and holds
a Readership at Imperial College London. He
received his undergraduate Computer Science
degree from University of Buenos Aires and his
Phd in Computing from Imperial College London.
His research interests are in behaviour mod-
elling, analysis and synthesis applied to require-
ments engineering, software architecture and
design, validation and verification, and adaptive
systems. Dr. Uchitel was associate editor of the

Transactions on Software Engineering and is currently associate editor
of the Requirements Engineering Journal and the Science of Computer
Programming Journal. He was program co-chair of ASE06 and ICSE10,
and will be General Chair of ICSE17 to be held in Buenos Aires. Dr
Uchitel has been distinguished with the Philip Leverhulme Prize, an ERC
StG Award, the Konex Foundation Prize and the Houssay Prize.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 21

