
crowd: A Tool for Conceptual Modelling assisted
by Automated Reasoning - Preliminary Report

Christian Gimenez∗1, Germán Braun1,2,3, Laura Cecchi1, and Pablo Fillottrani3,4

1Grupo de Investigación en Lenguajes e Inteligencia Artificial
Departamento de Teoŕıa de la Computación - Facultad de Informática

Universidad Nacional del Comahue
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
3Laboratorio de I&D en Ingenieŕıa de Software y Sistemas de Información

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur

4Comisión de Investigaciones Cient́ıficas de la Prov. Bs.As (CIC)

Abstract There is an increment on the complexity of the information
systems derived from new paradigms, for example Semantic Web, Big
Data, e-government, etc. which require high quality solutions to tackle
complex problems such as information integration. This quality is widely
determined by the conceptual level. In this work, we present crowd as a
novel tool for designing both conceptual models and ontologies based on
visual representations with assistance of logic-based reasoning services.
The challenge and the intention behind this work is to define graphical-
logical methodologies as effective solutions for the description of interest
domains at conceptual level. We detail the tool and demonstrate the
usage of an initial prototype with some simple examples. Moreover, we
identify limitations and potential issues about modelling and propose
some partial solutions to tackle them. Currently, we are working to re-
lease the first beta version of crowd.

1 Introduction and Motivation

There is an increment on the complexity of the information systems derived from
new paradigms, for example Semantic Web [1], Big Data [2], e-government [3],
etc., which require high quality solutions to tackle complex problems such as in-
formation integration [4, 5]. This quality is widely determined by the conceptual
level, therefore, conceptual modelling is key for the later implementation and
maintenance of such systems. To this end, this level requires new methodologies
and tools that enable domain experts to capture relevant features in the universe
of discourse and a good comprehension of the implicit knowledge, which is dif-
ficult even for IT experts. Moreover, it is key to establish clear and measurable
quality criteria along the process of creation and evolution of models. However,

∗
Scientific Vocation Scholarship. Consejo Interuniversitario Nacional (CIN). Argentina.

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 29



2 Gimenez, Braun, Cecchi and Fillottrani

conceptual models also can lead to lack of insights or consequences that can
be hidden to users in complex diagrams, causing inconsistencies and anomalies.
Hence, to equip tools with capabilities to automatically explore and check mod-
els would be highly desirable. This can be generally done first translating models
into some logic-based formal system and later handing them to an off-the-shelf
reasoner that can be then queried about their properties. Consequently, auto-
matic and graphical tools that assist modellers in obtaining sound conceptual
models and ontologies are essential for a successful integration between the mod-
ellers’ intentions and the formal semantics of them.

Zooming on the integration of visual diagrams with reasoning, ICOM [6] ap-
pears as a standalone tool for designing and linking multiple UML [7] and EER
[8] models, making easier their evolution. The main objective of ICOM is to val-
idate the effectiveness of class diagrams to express ontologies and retrieve new
conclusions through them, even in the same graphical language. However, its
communication between the ontology editor and back-end reasoners is by means
of the DIG protocol [9], which is not being actively developed nor supported by
new versions of reasoning systems. The set of graphical primitives is also limited
since it is provided by a deprecated graphical library affecting the scalability of
the tool, the visualisation aspects and models constraints considering reasoners
expressiveness. On the other hand, OntoUML is a pattern-based and ontolo-
gically well-founded version of UML, whose meta-model has been designed in
compliance with the ontological distinctions of a well-grounded theory, named
Unified Foundational Ontology (UFO). Currently, OntoUML is supported by
Menthor Editor1, which provides a simple and integrated set of features to assist
users such as syntactical verification, visual simulation, automatic semantic-anti-
patterns detection and correction, validation of parthood relations and ontology
patterns. Particularly, logic-based validations are supported by Alloy [10], al-
lowing simulations on specifications. However, reasoning is not integrated to
OntoUML’s graphical language. Lastly, ontology tools such as the well-known
Protégé [11, 12] allows editing and visualising ontologies, however, both the
graphical support and the logic-based reasoning are weakly integrated. It offers
a wide set of structures for modelling but inferences from external reasoners are
only limited to IsA relations in graphical plug-ins [13, 14], while this integration
is missing in its Web version, mainly accomplishing with the objective of being
an ontology repository and a collaborative editing platform.

In this work, we present crowd as a novel client-server tool, for graphical con-
ceptual modelling and ontology design with reasoning support to assist users in
these processes. The features of crowd comprise graphical modelling, the formal-
isation of models into a logic-based formal system and the communication with
off-the-shelf reasoners. This enables a satisfiability checking process and the in-
ference of implicit constraints, which will be expressed in diagrams by using the
same graphical language. Moreover, users will visualise their models in an online
manner while are being modelled and edited. In this way, we provide means to
stimulate interest in this kind of tools for designing both conceptual models and

1 http://www.menthor.net/

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 30

http://www.menthor.net/


An Application for Conceptual Modelling assited by Automated Reasoning 3

ontologies based on the effectiveness of graphical modelling languages for ex-
pressing them. Furthermore, we intend to encourage researchers and companies
to develop these semantics-aware technologies. Lastly, another aim of crowd is
to be the base of new and more expressive methodologies assisted by reasoning
and oriented to cover ontology engineering needs previously identified in [15, 16].

A first prototype of this tool already runs on the client-server architecture.
It supports the OWLlink communication standard protocol [17] and a satisfiab-
ility checking process on simple UML graphical diagrams encoded in ALCQI
Description Logics (DL) [18], as demonstrated in [19]. The tool continues be-
ing developed with updated and scalable graphical libraries and technologies,
such as JavaScript and PHP, installed in an Apache server and by means of
quality-oriented programming techniques as Test-Driven Development [20].

This work is structured as follows. Section 2 gives an overview of the main fea-
tures of crowd and details its architecture. Section 3 presents the first prototype
developed together with some simple examples of use. A preliminary evaluation
and discussions are presented in section 4. To conclude the paper, section 5 de-
tails some related works, while section 6 elaborates on final considerations and
directions for future works.

2 crowd Tool Overview

crowd is a graphical modelling tool being supported by both Universidad Nacional
del Comahue and Universidad Nacional del Sur of Argentina. The intention be-
hind the tool is to allow users to design conceptual models and ontologies ad-
opting standard modelling languages. Complete logical reasoning is employed by
crowd to verify the satisfiability of specifications, infer implicit constraints and
suggest new ones. The leverage of automated reasoning is enabled by a precise
semantic definition of all the elements of the class diagrams. Hence, diagrams
constraints are internally translated into a logic-based formalism capturing typ-
ical features of models. To this end, the tool is fully integrated with a powerful
logic-based reasoning server acting as a background inference engine. Moreover,
since crowd is based on a deduction-complete notion of reasoning support relat-
ive to the diagram graphical syntax, users will see the original model graphically
completed with all the deductions and expressed in the graphical language itself.
This includes checking class and relationship consistency, discovering implied
class and cardinality constraints. Other non-graphical constraints can be mod-
elled in the tool, but they should be defined in a textual way. Lastly, crowd only
focuses on graphical modelling of schemes, while it does not consider individuals.

Additionally, users’ preferences and usages have been also considered as part
of methodological processes allowing a better understanding of their behaviours
and enabling a community of users on the crowd’s modelling approaches. Some
preliminary results about this issue have been also published in [15]. In that
work, we propose to integrate a set of pattern-based extension rules that identify
elements from a diagram and suggest any possible consistent evolution. These
rules guide the modelling process by identifying graphical elements and refactor-

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 31



4 Gimenez, Braun, Cecchi and Fillottrani

ing from them. Each rule has been defined and analysed by considering different
theories of design patterns in [16].

Figure 1. An overview of the crowd client-server architecture.

To conclude, our purpose is not to supply to the scientific community a robust
tool potentially replacing the other ones available. We do not claim that is more
usable than any of the existing tools either, as will be detailed after. crowd is a
meant to evaluate the integration of graphical languages with reasoning systems
and thus assist users by means of methodologies for conceptual modelling and
ontology design. Furthermore, we intend to stimulate interest in these knowledge
representation based technologies to be considered as tools for researchers and
companies.

2.1 A Description of the crowd’s Architecture

Figure 1 shows a high level overview of the client-server architecture. Users in-
teract with a front-end running in a Web browser, which provides a graphical
environment with the necessary functionalities for creating and editing models
together with a set of graphical primitives. Moreover, it shows the reasoner re-
sponses using the very same graphical syntax in addition to a textual manner.
The back-end running in the server side comprises modules to translate visual
diagrams, generate queries to the reasoning systems, reason over models spe-
cifications and process its output to be sent back to the front-end. Both sides
interact via asynchronous HTTP requests in order to allow users to visualise their

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 32



An Application for Conceptual Modelling assited by Automated Reasoning 5

diagrams, while are being modelled and edited. We explore each component in
turn.

Client. crowd’s client features are supported by a JavaScript Graphical Lib-
rary, called JointJS2. The main objective is to give easier instructions to draw the
primitives and currently, is being used in related tools as [21] for data visualisa-
tion. A preliminary review about different graphical libraries and their features
shows that this kind of libraries use Canvas or SVG drawing technologies through
basic commands to draw diagrams like UML. Also, they handle users’ events by
default such as drag and drop, between others. In particular, JointJS presents
some key advantages: it focus on drawing diagrams primitives, provides plug-ins
for UML, EER , etc. and is expandable by creating your own. Furthermore, it also
use the Backbone.js library to give structure to Web applications. Backbone.js
is a JavaScript library that assists in the development of Web applications by
providing a model-view-controller architecture for the client.

Similar libraries, such as Raphael3, Processing4, p5js5, provide simpler in-
terface for drawing primitives like curves and geometric figures. However, they
do not directly give developers an API of dedicated functions for drawing prim-
itives from our considered modelling languages. Lastly, jsPlumb6 does follow
another direction towards the assistance for drawing different kinds of connec-
tions between elements, but does not provide diagrams primitives yet.

Server. Firstly, the module OWLlink Translator provides the OWL 2 repres-
entation from an input graphical model to be sent to the back-end reasoner. It
takes a JSON representation of an user’s diagram and generates an equivalent
OWLlink-syntax model. The Query Generator module supplies a set of queries
to hand them to the reasoner over the initial model. These queries retrieves mod-
els properties by using built-in reasoning services. Different sets of queries can
be configured in this component according to invoked methodologies or services
from the crowd’s front-end. Hence, the reasoning over models is composed by
the initial user’s input together with the set of queries supplied by the previous
module. They are executed by an off-the-shelf inference engine, which is repres-
ented through the Reasoner module. The reasoning results are the input of the
Response Processor module, where are finally processed and returned to the
front-end displaying new insights or consequences possibly hidden.

3 crowd First Prototype and Examples of Use

crowd’s prototype front-end is developed in JavaScript and running in a Web
browser, while its back-end runs in an Apache server and is developed in PHP.

2 http://www.jointjs.com/
3 http://raphaeljs.com/
4 http://processingjs.org
5 http://p5js.org
6 https://jsplumbtoolkit.com/

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 33

http://www.jointjs.com/
http://raphaeljs.com/
http://processingjs.org
http://p5js.org
https://jsplumbtoolkit.com/


6 Gimenez, Braun, Cecchi and Fillottrani

Currently, the prototype allows graphically creating and editing simple UML
diagrams, although more expressive OWL 2 [22] constraints can be appended to
models by inserting OWLlink statements. crowd’s prototype is integrated with
the Racer DL reasoning server [23].

Expression crowd syntax Description Logic syntax

Class Class1

Binary
Association 0..n

0..n
> v ∀A.Class2 u ∀A−.Class1

IsA Relationship

Class1 v Class
Class2 v Class

...
Classn v Class

Table 1. crowd representation and description logic formalisation for concepts, binary
associations and IsA relationships.

Reasoning service OWLlink query number of queries

project status
<IsKBSatisfiable kb="http://<server>/kb"/>

1

class satisfiability

<IsClassSatisfiable kb="http://<server>/kb">
<owl:Class IRI="Class"/>

</IsClassSatisfiable> c

Table 2. OWLlink requests and number of queries in the first crowd prototype. The
value of c represents the number of classes in the model.

Table 1 outlines the graphical UML primitives being supported by the pro-
totype and their corresponding ALCQI expressions. In this respect, description
logic concepts represent graphical UML classes and binary associations assume
0..n cardinality by default. Similarly, Table 2 summarises the reasoning services
to be executed, their OWLlink syntax and the number of these queries, where
c is the number of classes. Hence, when reasoning is invoked, the whole model
and each class in it is checked for satisfiability (i.e. non-emptiness) through these
queries.

The current look-and-feel of the tool is shown in Fig. 2. Its interface includes
the Tools and Details menus. The first presents users’ options to add UML
classes, enable the translation of graphical models to OWLlink syntax and invoke

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 34



An Application for Conceptual Modelling assited by Automated Reasoning 7

Figure 2. crowd’s diagram for satisfiable example. The Graphical User Interface (GUI)
includes a Tools menu to add classes and a Details menu to check the reasoning
outputs in a textual way.

the reasoning services by means of a traffic light icon. On the other hand, the
Details menu shows text area elements to insert OWL 2 expressions in textual
way and visualise the reasoner’s details.

<owl:SubClassOf>

<owl:Class IRI="A"/>

<owl:Class abbreviatedIRI="owl:Thing"/>

</owl:SubClassOf>

<owl:SubClassOf>

<owl:Class IRI="B"/>

<owl:Class abbreviatedIRI="owl:Thing"/>

</owl:SubClassOf>

<owl:SubClassOf>

<owl:Class IRI="C"/>

<owl:Class abbreviatedIRI="owl:Thing"/>

</owl:SubClassOf>

<owl:SubClassOf>

<owl:Class IRI="B"/>

<owl:Class IRI="A"/>

</owl:SubClassOf>

<owl:SubClassOf>

<owl:Class IRI="C"/>

<owl:Class IRI="A"/>

</owl:SubClassOf>

<owl:SubClassOf>

<owl:Class IRI="C"/>

<owl:Class IRI="B"/>

</owl:SubClassOf>

Figure 3. OWL 2 statements generated by crowd from the UML initial model in Fig.
2. This task is done by the OWLlink Translator module.

Lastly, the following two examples will illustrate how the models satisfiability
checking is done. In both cases, we instruct crowd to send the OWL 2 represent-
ation of diagrams to the server for invoking reasoning services. After this, the
tool will inform the details of the reasoning process and update the user interface
according to its responses through the traffic light icon in such front-end.

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 35



8 Gimenez, Braun, Cecchi and Fillottrani

<IsKBSatisfiable kb="http://kb1"/>

<IsClassSatisfiable kb="http://kb1">

<owl:Class IRI="A"/>

</IsClassSatisfiable>

<IsClassSatisfiable kb="http://kb1">

<owl:Class IRI="B"/>

</IsClassSatisfiable>

<IsClassSatisfiable kb="http://kb1">

<owl:Class IRI="C"/>

</IsClassSatisfiable>

<BooleanResponse result="true"/>

<BooleanResponse result="true"/>

<BooleanResponse result="true"/>

<BooleanResponse result="true"/>

Figure 4. Set of queries of the OWLlink request message generated in the Query

Generator to be submitted to the reasoning system. This picture also describes the re-
sponses received for each query in the same OWLlink syntax. Notice that both classes
are satisfiable as well as the complete knowledge base.

Satisfiable Example. Figure 2 shows a simple UML class diagram composed
by three classes A, B and C. Classes B and C are subclasses of A and also B sub-
sumes C Both relationships are incomplete and overlapping. The current colours
in the traffic light mean that no satisfiability checking event has been required
yet. Such event will be triggered when clicking on this icon enabling the diagram
translation. Fig. 3 depicts the OWL 2 statements generated from the initial
graphical diagram. These statements are encapsulated in an OWLlink request
message together with the set of queries shown in Fig. 4. As soon as the quer-
ies answers are received and processed, they are sent back to the front-end and
the green colour is highlighted in the traffic light indicating that our model is
satisfiable. Reasoner output is also shown in Fig. 4.

Figure 5. Conceptual diagram for unsatisfiable example. crowd highlights the incon-
sistent class in a different colour and the traffic light in red.

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 36



An Application for Conceptual Modelling assited by Automated Reasoning 9

<owl:DisjointUnion>

<owl:Class IRI="A"/>

<owl:Class IRI="B"/>

<owl:Class IRI="C"/>

</owl:DisjointUnion>

Figure 6. OWL 2 for complete and disjoint IsA relationship in Fig. 5. The
OWL 2 DisjointUnion is a syntatic shortcut for the axioms EquivalentClasses,
ObjectUnionOf and DisjointClasses.

Unsatisfiable Example. In this example, user’s initial model is similar to the
previous one, but we have modified by adding a complete and disjoint IsA rela-
tionship between the parent class A and its children B and C. OWL 2 statements
from this disjoint union of class are depicted in Fig. 6 to be appended to the
code already shown in Fig. 3. Despite the fact that this feature is still under
development, we expect that this modification is to be displayed as depicted in
Fig. 5. After invoking the reasoning services from the application asking about
diagram and classes satisfiability, the background reasoner returns the responses
messages shown in Fig. 7. This result is to be displayed in the front-end as a red
traffic light indicating inconsistencies in the current diagram. Particularly, class
C is coloured in red highlighting its inconsistency.

<BooleanResponse result="true" warning="Unsatisfiable classes:

(*BOTTOM* BOTTOM file:<OWLlink file>C)"/>

<BooleanResponse result="true"/>

<BooleanResponse result="true"/>

<BooleanResponse result="false"/>

Figure 7. Reasoner output returning “false” for the unsatisfiable class C and “true”
for A and B class. Notice that the complete model still continues being satisfiable.

4 Preliminary Evaluation

crowd has been designed as a scalable and maintainable architecture for adapting
new graphic engines, design methodologies and background reasoners. In this
respect, we have selected expansible graphical libraries and Web technologies to
achieve properly this objective. As introduced in section 1, related tools were
designed by following other aims and generally, they only visualise models and
ontologies in a limited way. Furthermore, the graphical and reasoning integration
is weak or no reasoner assistance is supplied to modellers. Consequently, these
limitations require a lot of cognitive effort from users along the modelling process.

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 37



10 Gimenez, Braun, Cecchi and Fillottrani

crowd has been conceived from scratch as a graphical-centric tool supporting
standard modelling graphical language and considering the possibility to expand
its graphical primitives for more expressiveness. We realise that such languages
are not enough expressive if we take into account the underlying expressiveness of
state-of-the-art reasoning systems. For example, users could not visually repres-
ent disjoint and equivalence constraints, between others logical axioms. Because
of this, we have considered two possible solutions: to allow users to define logical
expressions, which requires knowledge about the formal systems, as DLR [5] or
provide new graphical primitives with a precise semantic definition. In this sense,
crowd implements a text area for introducing OWL 2 statements as a temporary
solution.

From a graphical point of view, crowd’s prototype does not yet implement
special visual techniques for handling large diagrams. However, this has been
taken into account during the development process and the selection of graph-
ical libraries. Although some graphical primitives are still missing, we have tested
the JointJS library by creating more than 50 UML classes keeping the prototype
user interface browseable. These 50 classes represent 50 concepts in a DL know-
ledge base, which is perfectly supported by the current off-the-shelf reasoners.
Nevertheless, a trade-off between the size of the diagrams and their readability
should be considered as part of a visualisation process [24]. In such processes,
cognitive activities are proposed and related to how visual models are known,
understood and learnt.

Lastly, interoperability with other tools is another important aspect so that
modules to support importing and exporting should be implemented for standard
languages.

5 Comparison with other Tools

With reference to existing tools, we have surveyed some of them covering creat-
ing, editing and visualising of conceptual models and ontologies by using different
standard languages or graphs. However, either they are weakly integrated or no
integration exists with automatic reasoning systems.

Protégé [11] offers a wide and rich set of modelling structures, but deductions
obtained by external OWL reasoners are limited to Isa relationships by using
graphical node-link-based plug-ins as OntoGraf7, OWLViz 8 or SOVA 9. This
limitation is also presented in the Web version of this tool, called WebProtégé
[12], where the interaction with reasoners is missing and no graphical support
is provided, being mainly an ontology repository for collaborative edition. Top-
Braid Composer [25] and NeOn toolkit [26] also show inferences graphically
limited to Isa relationships. The first one, however, also provides another visual-
isation format by means of RDF [27] graphs while visualisation support in NeOn
toolkit is by ad-hoc plug-ins. OWLGrEd [28] does provide UML-like graphical

7 http://protegewiki.stanford.edu/wiki/OntoGraf
8 http://protegewiki.stanford.edu/wiki/OWLViz
9 http://protegewiki.stanford.edu/wiki/SOVA

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 38

http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/SOVA


An Application for Conceptual Modelling assited by Automated Reasoning 11

syntax and works as an external visualiser of Protégé since it allows importing
ontologies from there to be rendered. Nevertheless, inferred axioms in Protégé
are not visualised in OWLGrEd when exporting.

Unlike the previous tools, NORMA [29], Graphol [30] and VOWL [31] are
mainly graphical tools although no interaction with reasoning is supported. The
novel of these implementations is that the first two present a new graphical lan-
guages named ORM and a diagrammatic representation closer to DL ontologies,
respectively. In this same direction, VOWL tool exploits node-link diagrams to
visualise ontologies by focusing on schemes and some recommendations on how
to depict individuals and data values.

Finally, the more related to ours work are ICOM and OntoUML. The former
concerns the foundational concepts behind crowd. However, the old-fashioned
DIG protocol and the limitations to increase models expressiveness, in addition
to deprecated graphical technologies, are critical aspects. The latter is also a
graphic-centric tool with support for satisfiability checking by simulating spe-
cifications, but it is not integrated with visual diagrams. On the other hand, both
ICOM and OntoUML provide partial assistance to the graphical modelling pro-
cess by integrating with reasoners and checking for anti-patterns, respectively.
To sum up, none of the surveyed tools completely implement the integration of
visual representations with automatic reasoning. Hence, quality aspects become
difficult to assess making more relevant the objectives of our tool.

6 Conclusions and Future Works

We have presented crowd as a client-server Web architecture to support con-
ceptual modelling and ontology design with DL-based reasoning assistance for
deductions. We have identified this need after surveying and analysing the state-
of-the-art tools. In that way, we focus on the graphical representation of diagrams
and the well-known updated technologies for Web applications. We reach the first
prototype of crowd that allows to model very simple UML diagrams and invokes
reasoning services to check for satisfiability. This has been demonstrated in two
examples of use along this work. Finally, we have evaluated our experience de-
veloping the tool in a preliminary manner, identifying its current limitations and
proposing solutions for each one.

In the future, we plan to release the first beta version supporting a complete
subset of UML primitives and continue the evaluation of the tool. We also plan
to integrate methodologies from [15, 16] and evaluate results of these proposals
in real domains. Finally, we will work in a metamodel to enable coordinated
conceptual modelling by showing linkable ORM, UML, and EER diagrams ac-
cording to [32].

Acknowledgements

The authors would like to thank the anonymous referees for their comments and
suggestions. This work is based upon research partially supported by the Univer-

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 39



12 Gimenez, Braun, Cecchi and Fillottrani

sidad Nacional del Comahue (Project ID: 04/F006), the Universidad Nacional del
Sur (Project ID: 24/N038), the Consejo Nacional de Investigaciones Cient́ıficas
y Técnicas (CONICET), the Consejo Interuniversitario Nacional (CIN) and the
Comisión de Investigaciones Cient́ıficas de la prov. de Buenos Aires (CIC).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

2. Zikopoulos, P.C., Eaton, C., deRoos, D., Deutsch, T., Lapis, G.: Understanding
Big Data - Analytics for Enterprise Class Hadoop and Streaming Data. (2012)

3. Misra, C.: Defining E-government: A Citizen-centric Criteria-based Approach
(2006)

4. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Informa-
tion Integration: Conceptual Modeling and Reasoning Support. In: CoopIS, IEEE
Computer Society (1998) 280–291

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
Logic Framework for Information Integration. (1998)

6. Fillottrani, P., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web (2012)

7. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide.
Addison-Wesley Professional (2005)

8. Gogolla, M.: Extended Entity-Relationship Model: Fundamentals and Pragmatics.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1994)

9. Bechhofer, S., Moller, R., Crowther, P.: The DIG Description Logic Interface. In:
In Proc. of International Workshop on Description Logics (DL2003). (2003)

10. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw.
Eng. Methodol. 11(2) (April 2002)

11. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An
open development environment for semantic web applications. (2004)

12. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: A collaborative
ontology editor and knowledge acquisition tool for the Web. Semantic Web 4(1)
(2013) 89–99

13. Horridge, M.: OWLViz http://protegewiki.stanford.edu/wiki/OWLViz ac-
cessed July 2015.

14. Falconer, S.: OntoGraf http://protegewiki.stanford.edu/wiki/OntoGraf ac-
cessed July 2015.

15. Braun, G., Cecchi, L., Fillottrani, P.: Integrating Graphical Support with Reason-
ing in a Methodology for Ontology Evolution. In: Proc. of the 9th Int. Workshop
on Modular Ontologies WoMO 15 IJCAI 15. CEUR Workshop Proceedings (2015)

16. Braun, G., Cecchi, L.: Extension Rules for Ontology Evolution within a Conceptual
Modelling Tool. In: Proc. of the 1st Simposio Argentino de Ontoloǵıas y sus
Aplicaciones SAOA 15 JAIIO 15. CEUR Workshop Proceedings (2015)

17. Liebig, T., Luther, M., Noppens, O., Wessel, M.: Owllink. Semantic Web 2(1)
(2011) 23–32

18. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York, NY, USA (2003)

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 40

http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OntoGraf


An Application for Conceptual Modelling assited by Automated Reasoning 13

19. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1-2) (2005) 70–118

20. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc. (2002)

21. Mouromtsev, D., Pavlov, D., Emelyanov, Y., Morozov, A., Razdyakonov, D.,
Galkin, M.: The Simple Web-based Tool for Visualization and Sharing of Se-
mantic Data and Ontologies. In: Proceedings of the ISWC 2015 Posters & Demon-
strations Track co-located with the 14th International Semantic Web Conference
(ISWC-2015), Bethlehem, PA, USA, October 11, 2015. (2015)

22. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S., eds.:
OWL 2 Web Ontology Language: Primer. W3C Recommendation (27 October
2009) Available at http://www.w3.org/TR/owl2-primer/.

23. Haarslev, V., Möller, R.: Racer system description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: International Joint Conference on Automated Reasoning, IJ-
CAR’2001, June 18-23, Siena, Italy, Springer-Verlag (2001) 701–705

24. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2004)

25. TopQuadrant: TopQuadrant — Products — TopBraid Composer (2011)
26. Hasse, P., Lewen, H., Studer, R., Erdmann, M.: The NeOn Ontology Engineering

Toolkit. (2008)
27. World Wide Web Consortium: RDF 1.1 Primer. Available at https://www.w3.

org/TR/rdf11-primer/, last accessed May, 2016.
28. Cerans, K., Ovcinnikova, J., Liepins, R., Sprogis, A.: Advanced OWL 2.0 Ontology

Visualization in OWLGrEd. In: DB&IS. Frontiers in Artificial Intelligence and
Applications, IOS Press (2012)

29. Curland, M., Halpin, T.A.: The NORMA Software Tool for ORM 2. In: CAiSE
Forum. Lecture Notes in Business Information Processing, Springer (2010)

30. Console, M., Lembo, D., Santarelli, V., Savo, D.F.: Graphol: Ontology represent-
ation through diagrams. In: Informal Proceedings of the 27th International DL’14

31. Lohmann, S., Negru, S., Bold, D.: The ProtégéVOWL Plugin: Ontology Visual-
ization for Everyone. In: Proceedings of ESWC 2014 Satellite Events, Springer
(2014)

32. Keet, C.M., Fillottrani, P.R.: An ontology-driven unifying metamodel of UML
Class Diagrams, EER, and ORM2. Data Knowl. Eng. (2015)

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 41

http://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/

	crowd: A Tool for Conceptual Modelling assisted by Automated Reasoning - Preliminary Report

