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Abstract. In this work we present an approach to dynamically validate
the usage of software connectors in the context of software architectures.
By employing aspect oriented techniques the system’s execution is mon-
itored in order to obtain an architectural view describing how processes
communicate and interact with each other. This output can later be
compared to the connectors specified in the architecture document to
validate the consistency between the architecture specification and the
implementation of the system. A case study is presented showing the po-
tential of the approach. We believe the results are promising enough to
consider future extensions including other architectural elements beyond
connectors.
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1 Introduction

Over the past years the specification of software architectures has become a
crucial activity for medium and large software systems. In few words, a specifi-
cation of a software architecture for a given system provides a high level view of
its main components and artifacts, the way they relate to each other, and the
expected behavior for such interactions [16, 10]. In this sense Software Architec-
tures can be seen as a bridge filling the gap between requirements elicitation and
the resulting code [10].

One of the main challenges when dealing with software architectures is to
determine whether a certain implementation of a given system satisfies its ar-
chitecture specification [17, 8, 9]. There are two main reasons for this. On one
side, traceability betweens architecture elements and code is most of the times
fuzzy, complex and hard to achieve, since different levels of abstraction coex-
ist simultaneously [17]. On the other side, software architectures suffer from a
problem widely known as drift and erosion [20]. This happens when the software
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architecture specification of a system gets outdated with respect to the actual
system implementation, mainly due to software changes that are not properly
documented.

Some approaches tackling this problem aim to assure consistency between
a system architecture’s specification and its implementation by construction [3,
18]. However, they can only be applied only if the specific tools giving support to
the approach can be employed. In some occasions, for example, it is not possible
to express all the interactions of a system since they might use architectural styles
which are not available on the tools to be used. Other alternatives addressing
software architecture validation against a specification take a two step process
[21, 15]. They first recover, either statically or dynamically, the architecture of
the system. The second step consists of comparing the obtained result against the
architecture specification. From these alternatives the dynamic reconstruction of
software architectures has been pinpointed as the most challenging one [17, 21].

Trying to understand the architectural behavior of a system from a static
perspective can sometimes be problematic since processes and other dynamic
structures cannot be easily mapped to static structures. What is even more,
some architectural elements exist only while the system is running (for example,
a server dedicated connection to a client). In addition, there are several aspects
that make dynamic architecture reconstruction appealing, specially since it in-
cludes dealing with the abstraction gap between architecture and code [21]. A
first aspect to be mentioned is that the creation and behavior of a certain archi-
tectural element may involve a complex interaction between static code elements.
Besides, there might be different implementations of a given architectural ele-
ment. The same Publish and Subscribe component might be implemented using
buffers, linked lists, or a customized data structure, where each option leads to
different implementation code. In order to handle all the aspects some conces-
sions have to be made. For example, the tool DiscoTect [17, 21] takes as input the
code of the system and extracts the architecture while monitoring the system’s
execution. It has been widely applied since it can detect architectural compo-
nents, connectors, roles, and interfaces. However, the input code must follow a
certain style and naming conventions, and this restriction might be a hard to
satisfy in certain contexts.

The work we present in this paper uses aspect-oriented techniques [14] to
reconstruct the architecture of a system based on its execution. In particular,
we focus on the utilization and validation of architectural connectors. The most
relevant architectural view to reflect the dynamic behavior of a system is called
Components and Connectors view [7, 4]. In this view, connectors play a crucial
role since they establish when, how and under which conditions two or more
components interact. Given this context, our approach answers the following
question: Is the implementation of a system communicating the way
it is specified by the connectors in the Components and Connectors
view? Since it is based on code annotations, our approach does not impose any
restrictions on the code. Nonetheless, it must be seen as an initial exploratory
step since it only focuses on connectors, leaving out other architectural elements
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as components, ports, roles or interfaces. However, we believe that the obtained
results are promising enough to consider possible extensions to cope with more
architectural elements.

1.1 General description of the approach and contributions

Our approach monitors a system’s execution and builds an architecture view
specifying how the detected connectors are used by the running processes. This is
achieved using aspect orientation, a modularization technique that is suitable for
runtime system monitoring. Using aspect orientation the functioning of a system
can be interrupted at certain execution points in order to introduce the behavior
of an aspect. The definition of an aspect includes the specification of its behavior
and the identification of those places of the system that trigger its application.
In our approach aspects are in charge of observing the execution and detecting
the presence of architectural connectors. With the information gathered by the
aspects our tool builds an architectural view showing what components exists
in the system and how they interact with each other. The tool was implemented
using AspectJ, perhaps the most popular aspect oriented programming language.
As AspectJ is an extension of the Java programming language, our tool only
works with applications written in Java. However, we believe the approach could
also be implemented in other aspect oriented programming languages.

In order to accomplish their task aspects assume that the code implementing
the system is properly annotated indicating those places in the code where the
connectors are defined and used. The usage of code annotations is not new and
has been largely used in the past years as a way of building a higher level of
abstraction and introducing a more robust layer to interact with than code itself
[19, 12]. In a software architecture domain this is particularly interesting since
it helps to reduce the gap between architectural elements and code. One classic
problem of code annotations is how to properly annotate the code, specially in
those cases where there is little knowledge of the code implementing the system.
We alleviate this issue by enabling the possibility of an incremental and localized
annotation process. This is addressed in section 3.

The rest of the paper is structured as follows. Section 2 details the connectors
our tool can detect, how they are recognized by the aspects and how our tool
builds the architectural view. Section 3 discusses some important topics related
to our approach whereas section 4 illustrates our tool in action by analyzing
a case of study. Section 5 briefly discusses related work and section 6 presents
conclusions and future work.

2 Selecting, Specifying and Detecting Architectural
Connectors

In this section we describe the type of connectors our approach deals with and
we specify the protocol and expected behavior for some of them. Finally, we
explain the process to detect the connectors using aspect-oriented techniques
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and describe how the architectural view is built. A simple example is shown to
illustrate this process.

2.1 Selecting Connectors

Connectors play a crucial role in any software architecture specification since
they dictate how the different parts of the system communicate with each other.
In particular a connector allows to express how information and data progress
and flow through the system and which protocols are used. In the literature
there are currently available a plethora of different taxonomies describing con-
nectors’ properties and behavior [4, 7, 20]. Taking this into account, we believe
it is important to mention which software connectors our approach can handle
and state the expected protocol for each one. The connectors detected by our
approach are the following: Asynchronous Call, Synchronous Call, Pipe, Pub-
lish and Subscribe,Client-Server, Router, Broadcast and Blackboard. Despite this
selection might be considered arbitrary, the items in the set allows to express
the most common software interactions between two or more processes. As an
example of the expressivity of the set, it is worth mentioning that it covers all
the connectors used by Red Hat to describe the software architecture of the
products of the company [1]. What is more, it would not be difficult to add new
connectors into the set if necessary.

2.2 Specifying Connector’s Behavior

The behavior specification of a connector is crucial since it guides the runtime
detection procedure performed by our approach as it will be later explained in
the next section. Since our approach is only focused in detecting connectors in
runtime the specification does not need to include notions such as ports, role
and other similar concepts. Section 6 mentions the possibility to include these
concepts in future work. It should be noted that we only present here an initial
specification due to the exploratory phase of our tool. A more formal connector’s
specification needs to be addressed as future work.

Due to space reasons we now only briefly discuss in this section the initial
specification for only two connectors: Synchronous Call and Pipe. The complete
connector’s specification and detection can be found in [11]. The Synchronous
Call connector is perhaps the most used and known software architecture con-
nector. Roughly speaking, a process calls some subroutine from other process
and waits for an answer to continue its execution. Regarding the Pipe connector
we define its behavior as an intermediate structure communicating two processes
or components: a component producing the data and a component consuming
the data. We denominate these actions as: push (writing in the pipe) and pop
(reading from the pipe).
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2.3 Detecting Connectors in Runtime and Building the
Architectural View

In this section we describe how using aspect-oriented techniques our approach
dynamically detects which connectors are being used based on the system’s ex-
ecution, and how it builds the architectural view. We define an aspect for each
available connector. Each one of these aspects will be in charge of detecting the
presence of a given connector. As it it previously mentioned, the tool assumes
that the source code is annotated in those places implementing the protocol
of each connector. This is true for every connector excepting the Synchronous
Call connector. Our tool considers any method call without annotations as two
components communicating with a Synchronous Call connector. Based on the
annotations, the aspects can infer the presence of a given connector. For exam-
ple, the next code fragment sketches part of the definition of the Pipe Aspect (see
Listing 2-1). In particular, the code fragment describes those moments where the
aspect should intervene: whenever a certain object invokes a method annotated
as PipePush or PipePop. Note that the annotations name and quantity follow the
connector’s specified protocol. The complete aspect definition for each connector
can be found at [11].

Listing 2-1. Part of the Pipe Aspect Definition

1 c a l l ( @PipePop ∗ ∗ ( . . ) ) ;
2 c a l l ( @PipePush ∗ ∗ ( . . ) ) ; . . .

Based on the information gathered by the aspects there exists a central pro-
cess named Architectural Builder who builds the connectors view. This process
keeps track of the interactions among components, and the connector used in
each interaction. Since all the aspects are observing the system’s execution at
the same time we define an aspect’s application precedence in order to guarantee
that the architecture view is properly built. For example, to avoid identifying a
method call to a pipe structure as a Synchronous Call connector instead of a
Pipe connector. This is related to the Aspects Interference problem [5], and it is
later discussed in section 3.

The architectural view is updated each time new information is obtained by
any of the aspects. We now present a simple example to illustrate the detection
of connectors in runtime and the process in charge of building the architecture
view. The reader is referred to [11] for more details about the Architectural
Builder process.

A Simple Example Suppose a system implementing two components commu-
nicating through a Pipe Connector. More concretely, an EmailsPipe class imple-
menting a pipe, and two components using it: the EmailCreationGUI and the
EmailProcessor class. In this context, the expected output for the tool would be
a view showing that these classes are communicating through a Pipe connector.

The code fragment in Listing 2-2 shows the definition of a EmailsPipe class
where two of its methods (pushNewEmail and popNextEmail) are annotated as
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implementing a Pipe connector’s protocol. The annotations are shown in lines 2
and 6.

Listing 2-2. A Class Implementing a Pipe

1 class EmailsPipe {
2 @PipePush
3 public void pushNewEmail ( Email emai l ){
4 emai l s . add ( emai l ) ;
5 }
6 @PipePop
7 public Email popNextEmail ( ){
8 emai l s . g e t F i r s t ( ) ; . . .
9 }

Similarly, the next code fragment (Listing 2-3) shows part of the code for
the two classes of the system communicating through the pipe: the EmailCre-
ationGUI and the EmailProcessor class.

Listing 2-3. Implementation of the Components Using the Pipe

1 class EmailCreationGUI {
2 public void newEmail ( Email emai lRece ived ){
3 emai l sConta iner . pushNewEmail ( emai lRece ived ) ;
4 }
5 }
. . .
6 class Emai lProcessor {
7 public void processEmai l ( ){
8 EmailPipe emai lToProcess=emai lsToProcess . popNextEmail ( ) ;
9 // . . .
10 }
11 }

When the pushNewEmail is invoked (shown in line 3 in Listing 2-3) the Pipe
aspect enters in the game since a method annotated as PipePush is called. The
pipe aspect collects the information, which is in turn passed to the Architectural
Builder which starts to build a Pipe relationship between the class EmailCre-
ationGUI and a Pipe connector. The architectural builder does not have at this
point enough architectural information to fully establish a pipe connector since
no objects have consumed from the pipe. In other words, no pop annotated
method has been invoked yet. However, it is registered that the class Email-
CreationGUI performed a push over a pipe. It is worth noticing at this point
that the aspect in charge of detecting synchronous call connector will also be
activated. However, since this method invocation has been previously analyzed
by the Pipe aspect the Synchronous Call aspect ignores this method call. Recall
that there exits a precedence rule that dictates which aspect is applied first.

Eventually, the popNextEMail method is invoked (see line 8 in Listing 2-
3). When this invocation occurs, the pipe aspect gathers this information and
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the Architectural Builder updates the view establishing that classes EmailCre-
ationGUI and EmailProcessor communicates through a pipe connector as it
was expected. It can establish this relationship since an object of class Email-
CreationGUI performs a push action over a pipe, and a object of class Email-
Processor performs a pop action over the same pipe.

3 About Aspects Precedence, Incremental and Localized
Analysis and some Extra Features

In this section we highlight some important points of our approach. We first
analyze some decisions regarding aspects precedence, which are related to a cru-
cial problem for the aspect-oriented community such as the Aspects Interference
Problem [5]. In second term, we describe how by employing an special type of an-
notation our approach is suitable for an incremental and localized architectural
analysis. Finally, we present some extra features available in our tool beyond the
discovery of software connectors.

3.1 Aspects Precedence and the Aspects Interference Problem

The Aspect Interference problem [5] is a very well known problem in the aspect
oriented community. This problem occurs when two or more aspects can act
on the very same point of interest, such as a method call. In these cases, it is
important to resolve questions like: Which aspect should be applied first? Why?
Does it matter? In particular, this problem is exacerbated if the correct behavior
of the system depends on the order in which the aspects are applied.

In our case this problem occurs when two or more of the aspects defined
to identify connectors interact within the same method call. For example, a
method call could be registered either as a synchronous call or as a part of a
pipe behavior. In order to tackle this problem we define a particular precedence of
aspects application, so that the tool analyzes each particular method call in the
right order. After a rigorous analysis we define the following precedence: Pipe ,
Publish Subscribe, BlackBoard, Client Server, Broadcast, Router, Asynchronous
Call and finally, Synchronous Call. This implies that the Pipe aspect will be
always executed first (it has the highest precedence) and the Synchronous Call
aspect will always occur in the last place (a simple method call will be catalogued
as a Synchronous Call connector if no other connector was previously detected).
Getting back to the previous example when trying to distinguish between a Pipe
connector or a Synchronous call, if the method call was part of a pipe structure
the resulting architectural relationship will be registered as a Pipe as expected
since the Pipe aspect has higher precedence than the Synchronous Call aspect.

One interesting final remark regarding aspects interference is about the ex-
pressivity of the language used to specify aspects’ behavior. We would have
needed to specify aspect application as follows: “Only apply this aspect at this
execution point if and only if no other aspect has been applied here before”.
Similarly, work in [6] proposes a richer aspect model where the user can specify
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this exclusive application of an aspect at a certain point. Since the language we
used to implement our approach (AspectJ) does not support this kind of expres-
sions, this was solved in an ad-hoc fashion, keeping a structure of the points of
interest already visited. Under this perspective, we advocate for aspect oriented
languages implementing a richer model to express and specify aspect’s behavior.

3.2 Incremental and Localized Architectural Analysis

By defining a special type of annotation our approach is able to allow an in-
cremental and localized architectural analysis. In this sense, we introduce an
special annotation named “Ignored” pursuing two main purposes. On one side,
some methods might be known as not being relevant for architectural analyses.
In those cases, they can be annotated as “Ignored” so that aspects can simply
ignore their invocation. The second objective for this annotation is to allow an
incremental and localized construction of the architectural view. For example,
if only a certain portion of the code is to be addressed or only a particular in-
teraction between two or more components need to be validated the rest of the
implementation can be marked as ignored so that the tool can only focus on the
exact portion of the system that is relevant at that given moment. This is also
particularly interesting since it allows the possibility of an incremental discovery
of the architecture. The user might start analyzing only a small portion of the
system and later expand the area covered by our tool in an incremental flavour
by simply removing the ignored annotation. This incremental process is also
helpful to properly annotate the code of the system if there is little knowledge of
the system behavior. The user of the tool can initially annotate only a portion
of the code restricting the analysis to that portion, instead of trying to annotate
the whole code at once.

3.3 Some Extra Features

The current state of our tool is able to provide two more interesting features
besides the dynamic discovery of software connectors. In the first place, it can
detect a more deeper analysis related to the Publish Subscribe connector. In
particular, in can detect what type of messages is receiving each subscriber.
This information is helpful in order to validate that each component is receiving
the data is supposed to receive and nothing else. This is achieved by recording
not only the components interacting at a given point but also the type of the
messages exchanged in the interaction.

More related to an architectural analysis, our tool can suggest the presence of
a Pipe and Filter architectural style and not only the presence of a pipe connec-
tor. This style describes a certain interaction between two or more components
communicating with pipe connectors in a sequential fashion. When collecting
the information gathered by the Pipe aspects, the tool can build a chain of
processes interacting all together with two or more pipes over the same struc-
ture, and therefore detecting not just a pipe connector but a Pipe and Filter
architectural style.
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4 Case Study

In this section our approach is shown in action by validating the architecture of a
given system. Although the system under analysis is simple it features non trivial
architectural behavior exhibiting the use of several type of different connectors
resulting in a interesting case of study. The system, called “My Little Tomato
Plant”, was implemented as a final assignment of a Software Engineering course
at University of Buenos Aires, Argentina. It consists of a system in charge of
controlling the growth of a tomato plant. Given the information obtained by
sensors attached to the plant (indicating water, light and humidity levels) the
system executes the necessary actions to take care of the tomato plant and to
assure that it grows healthy. These actions are obtained based on botanical
knowledge and a growth plan indicating the expected health parameters of a
tomato plant through its life cycle. These actions are built as orders to actuator
components that can augment or diminish the levels of light, water and humidity
that the tomato plant is receiving. Figure 1 shows the architecture specification
for the system. It can be seen that several connector types are used: Synchronous
and Asynchronous Call, Publish and Subscribe, Pipe and Client Server.

Fig. 1. Original Architecture Specification of the System

Given a certain code implementing the system our tool was employed to
obtain an architectural view based on the system’s execution. Figure 2 shows
the architecture built by the tool.

Two main differences are appreciated when comparing both views (the archi-
tecture built by the tool in Figure 2 and the architecture original specification
in Figure 1). One one side, there is a missing collaboration between two com-
ponents. In the original specification there is a Synchronous Call relationship
between the Growth Plan and the Botanical Expert component which is not
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Fig. 2. The architectural view of the system built by the tool

present in the architecture built by the tool. It can be the case that either the
Growth Plan component was marked as ignored, or that the component was not
involved in the system’s execution when the view was built. In these cases, the
user can remove the ignored annotation, or run again the system in such a way
that the Growth Plan is executed. If after realizing these changes the Growth
Plan component is still missing in the view then this inconsistency between both
views indicates a potential serious problem: either there is an implementation
bug and the Botanical Expert component is never interacting with the Growth
Plan component, or an architectural decision was made during the implementa-
tion phase and the original specification was never updated. On the other side,
there is a connector mismatch between components Sensor and Botanical Ex-
pert. In the original architecture it is specified that they should interact through
an Asynchronous Call connector whereas in the view built by the tool they inter-
act through a Synchronous Call connector. A similar analysis to the one seen in
the previous case can be performed: either the original specification is outdated
or the current implementation is not behaving as it is supposed according to the
specification.

In both cases the tool resulted indeed helpful to identify architectural behav-
ior alarms either in the shape of errors in the implementation or specific items
to update the original architecture specification. Finally, it is worth mention-
ing that the tool also properly identified a Pipe and Filter style. In addition,
the output obtained by the tool was also used to validate that the subscribers
processes were receiving the expected information from the publishers.

5 Related Work

Approaches in related work can be divided into three categories [21, 17]. The
first one groups those alternatives which aim to assure consistency between a
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system architecture’s specification and its implementation by construction [3,
18]. These approaches work efficiently when the tools that give support to them
can be actually employed [21]. In some occasions, for example, it is not possible
to express all the interactions of a system since they might use architectural
styles which are not available in the tools to be used.

The second category consists of those approaches based on static code anal-
ysis [15, 13]. These approaches aim to build the architecture of a system upon
its code. However, they suffer from some known problems [21, 17]. Trying to un-
derstand the architectural behavior of a system from the code can be sometimes
problematic since process and other dynamic structures cannot be easily mapped
to the static structures reflected by the code. What is more, some architectural
elements exist only while the system is running and therefore cannot be captured
using these techniques. Work in [2] uses static analysis and annotations to build
a runtime architectural structure where conformance analysis can be applied.
The main purpose of our is different since we are only interested in building a
dynamic view of the architecture. Similarly, annotations in [2] are focused in the
structure and hierarchy of the system while in our work they are used to identify
the behavior of the connectors. Finally, approaches in the third category focus
on the extraction of a system architecture upon the dynamic observation of the
system execution. Probably the most representative example of the category is
the tool DiscoTect [21, 17]. It has been widely applied since it can detect archi-
tectural components, connectors, roles, and interfaces. However, the restriction
for the code to follow certain naming conventions and other similar limitations
might be hard to satisfy in certain contexts.

6 Conclusions and Future Work

In this work we present a tool that builds an architectural view based on the
system’s execution. In particular, it is focused on detecting the connectors used
while the system is executing. The tool requires that the source code is properly
annotated in those places implementing the connector’s protocol. We explained
how can this be done in an incremental and localized manner even in the case
where there is little knowledge of the source code. We applied our tool to a non
trivial example and the results showed that the tool helped to identify architec-
tural behavior mismatches between the running system and the original speci-
fication of the system. We believe our tool constitutes a solid first exploratory
step towards a runtime discovering architectural tool.

Our tool was implemented using the AspectJ language, following aspect-
oriented techniques. In this sense, we found some obstacles when trying to spec-
ify the aspects behavior and we realized that a more richer language model is
needed to properly address the Aspect Interference problem [5]. Regarding fu-
ture work, we would like to augment our expressivity to denote architectural
behavior beyond connector’s detection. For example, we would like to add no-
tions like ports, roles, styles among others, in order to become a more precise
architectural tool. This next step would allow the possibility to interact with
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other software architecture tools like Arch Java [3] or DiscoTect [21]. We would
also like to explore the possibility to annotate the code automatically.
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