
Taxonomy-based Annotations for Variability
Management

Agustina Buccella1 ∗, Maximiliano Arias12, Matias Pol’la12, and Alejandra
Cechich1

1 GIISCO Research Group
Departamento de Ingenieŕıa de Sistemas - Facultad de Informática

Universidad Nacional del Comahue
Neuquén, Argentina

{agustina.buccella,maximiliano.arias,matias.polla,alejandra.cechich}@fi.

uncoma.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas - CONICET

Abstract. Currently, variability management in software product lines
requires novel mechanisms to deal with the inherent complexity of do-
main modeling. From this perspective, the construction of semantic ar-
tifacts, supporting the modeling and implementation of variability from
users’ requirements to reuse component development, gives stakeholders
a framework for communication and disambiguation. Our work is based
on level-domain views and driven by taxonomy-based annotations for de-
scribing variability and commonality. We illustrate the proposal through
a case study in the marine ecology domain, where results showed an
improvement in development time.

Keywords: Software Product Lines, Semantic Artifacts, ISO 19119 Tax-
onomy, Variability Management, Marine Ecology Domain

1 Introduction

Variability management is an activity dedicated to provide flexibility and a high
level of reuse during the software development. Within the software product line
approach, the variability activities are aimed at allowing developers to develop a
set of similar applications based on a manageable range of variable functionalities
according to expert users’ needs.

Several variability management approaches have emerged in the last twenty
years focusing on the different aspects of this activity. Proposals of techniques
for variability representation by using feature models [9], UML-based representa-
tions [16, 19], variability consistency checking [4], and complete frameworks [12,
17] supporting the whole software product line development, provide novel ideas
towards consolidating solutions about variability management issues. Within this

∗Este trabajo está parcialmente soportado por el proyecto UNCOMA F001 “Reuso
Orientado a Dominios” como parte del programa “Desarrollo de Software Basado en
Reuso”.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 169



2 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

wide range of proposals, we are interested in those focused on providing semantic
approaches and oriented to cover all the development process.

In this work, we propose an extension of our SPL development methodology,
presented in [1], in which we applied a level-domain view for the geographic
domain. Here, we took advantage of the geographic standards as starting points
to extract semantics and create a service taxonomy for the domain. The ser-
vice taxonomy [2] was created as a specialization of services categorized by the
ISO/DIS 191193. It helped stakeholders to bridge the gap among their differ-
ent skills by reducing the wide spectrum of information sharing. However, in
this development the variability was managed manually generating complexity
problems while the SPL was maturing. Thus, in this work, we propose to follow
our SPL development methodology by adding specific artifacts and activities to
represent and manage the inherent complexity of the variability. The main ob-
jective is to continue taking advantage of semantic resources, such as the service
taxonomy, and provide, at the same time, a variability approach specifically de-
signed to allow a controlled design and implementation of common and variant
parts of an SPL.

The paper is organized as follows. The next section presents related work in
the literature highlighting the context of our approach against others. Section
3 describes the domain and organizational artifacts that have been developed
as an extension of our SPL development methodology for managing variability.
Section 4 describes the application of the extended methodology to a real case
study in the marine ecology domain. Future work and conclusions are discussed
afterwards.

2 Related Work

The number of variability management approaches has been growing at a accel-
erated rate for the last twenty years. Novel proposals for managing variability
try to fill the gaps of several unsolved aspects of the software product line engi-
neering. Thus, in order to clarify this wide panorama, in Table 1 we include some
referenced works in the literature and classify them according to some modeling,
implementation and semantic aspects. The intention of this table is to show the
context of our proposal against to others in the literature.

For example, in the table we can see some of the known modeling techniques.
An important set of such techniques is based on the concept of features, which
first work was reported by Kang [8] with the FODA (Feature-oriented Domain
Analysis) method. Other proposals derived from this first technique were pre-
sented in [9] with Feature-oriented Reuse Method (FORM). UML extensions
represent another set of techniques in which researches propose extensions to
UML artifacts for variability modeling [19, 6]. Also, other set of techniques in-
clude those using the Orthogonal Variability Model (OVM), firstly proposed in
[12]. This model is represented as a separate model to avoid changing the way

3Geographic information. Services International Standard 19119, ISO/IEC, 2005.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 170



Taxonomy-based Annotations for Variability Management 3

Proposals Modeling Class
Implementation

Approach
Semantic
Resources

SPL Phases

FORM [9] Feature-oriented Compositional No
Modeling and
Implementation

COVAMOF
[17]

OVM-oriented Compositional No
Modeling and
Implementation

Ziadi &
Jézéquel [19]

UML-oriented Compositional
OCL
constraints

Product derivation

Haber et al.
[7]

Hierarchical Compositional No
Variability
Modeling

GEARS [11] Feature-oriented Annotative No
Modeling and
Implementation

La Rosa et al.
[15]

Configuration
models

–
Questionnaire-
based

Variability
Management

Siy et al. [18]
Ontology-based

– Ontologies Product derivation

Reinhartz et
al. [14]

Textual-based – Ontologies Domain Analysis

Our proposal
UML-OVM-
oriented

Annotative and
Compositional

Taxonomy
and
datasheets

Modeling and
Implementation

Table 1. Classifying proposals in the literature

of representing the software artifacts. Thus, OVM is classified as an annotative
approach, which annotate a base model by means of extensions [17].

In addition, for variability implementation there exists also a wide set of dif-
ferent proposals which apply novel mechanisms for making a simple and modifi-
able implementation. Main contributions can be classified in two main directions
[10]: annotative and compositional approaches. Annotative approaches imple-
ment variabilities by adding annotations in the source code [11]. During product
generation, source code must be removed in order to eliminate undesired vari-
ants [5]. Compositional approaches implement variabilities as distinct (physically
separated) code units. During product derivation, specific components or code
units are composed to each other.

Finally, we also analyzed proposals which apply semantic resources for sup-
porting variability during the whole SPL development process [14, 15, 18, 19]. For
example in [15] authors propose the use of questionnaire models as an analysis
technique in order to capture system variability.

Finally, our proposal is based on the use of two semantic resources, a ser-
vice taxonomy and functional datasheets [2]. They are applied and instantiated
during several SPL process activities and act as a support for reusing common
knowledge and experiences in the marine ecology domain and, at the same time,
provide better communication channels.

3 Representing variability during SPL development

Variability management is an activity that must be taken into account during
all stages of a software product line development. Specifically, during the do-
main engineering, each variation point must be clearly defined together with
their variants within the context of a software product line. Thus, in this work,

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 171



4 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

we propose a variability approach based on domain taxonomies which describe
services in a particular domain together with their interactions. This approach
is based on our SPL development methodology, presented in [1], in which we
divide the domain engineering process into two types of analyses: domain and
organizational. The domain analysis involves the management and modeling of
the information included in a specific domain. It only analyzes and designs the
domain in a general way. Then, the organizational analysis takes the domain
analysis information to adapt it to the context of the SPL. Therefore, the do-
main analysis activities impact directly on the organizational analysis ones. In
order to manage variability, we add specific artifacts and activities to the two
analyses aforementioned.

3.1 Domain Analysis

At the top of Figure 1 we show the activities included in the domain analysis,
as part of the SPL methodology [1], together with the domain artifacts which
must be developed. A domain service taxonomy is the first artifact to be devel-
oped as part of the information source analysis (ISA) activity. This taxonomy
classifies the possible services involved in a domain based on the daily work of
different professionals. It is a semantic resource that acts as a controlled vo-
cabulary for all participants. In addition, it must be developed by considering
external resources as both de-facto and de-jure standard which contribute to
the classification. Obviously, the construction of this service taxonomy can de-
mand more or less time depending on the amount and quality of the available
resources to assist this development. The second domain artifact is the definition
of a reference architecture which specifies a preliminary structure for the service
interactions. This structure provides the starting point for defining the place
and type of dependencies of a service interaction schema. Then, the third arti-
fact, functional datasheets, is developed by designing interactions in which the
services of the taxonomy work together to fulfill domain specific functionalities
within the components of the defined reference architecture.

For the specification of the functional datasheets, we propose the use of a
graphical and formal template which represents the functionalities by means of
a set of predefined service interactions. In our previous work [1], we had defined
a textual template which allowed us to define some of these dependencies. Here,
we extend it in order to improve the specification and formalize it by using
UML metamodels represented by XML documents. The items included in the
template contains, for each required functionality, an identification, such as a
number or code, a textual name describing the main function, the domain in
which this functionality is included, the list of services involved for fulfilling
the functionality, a graphical notation and a set of XML files specifying the
services and their interactions. For these two last items we must define the set
of dependencies that allow us to represent the interactions. These dependencies
involve the common interactions among common4 and variant services.

4Common services are services which will be part of every product derived from
the SPL

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 172



Taxonomy-based Annotations for Variability Management 5

Fig. 1. Domain and organizational artifacts used to represent variability

The last artifact to be created for the domain analysis is the preliminary
software component structure based on the functionalities represented on each
datasheet. For each component we must indicate which functional datasheets
implement, when the correspondence is 1-1; or which services, from more than
one datasheet, are implementing, when the correspondence is 1-M or M-M.

Dependence Representation on Functional Datasheets
In order to represent the dependencies, we define a set of XML tags and

a graphical notation, adapted from the Orthogonal Variability Model (OVM)
proposed in [12]. The dependencies represented are:

– Use dependency (XML tag:<Use> ) specifying a dependence between
common services, which are not necessarily associated with a variation point,

– Mandatory variation point (XML tag:<MandatoryVP> ) determining
the selection of a variant service when the variation point is included,

– Optional variation point (XML tag:<OptionalVP> ) specifying that
zero or more variant services, associated to the variation point, can be se-
lected,

– Alternative variation point (XML tag:<AlternativeVP> ) defining that
only one variant service, of the set of associated variants of the variation
point, must be selected (XOR relation),

– Variant variation point (XML tag:<VariantVP> ) defining that at least
one variant service, of the set of associated variants of the variation point,
must be selected (OR relation),

– Requires dependency (XML tag:dependency:Requires = “serviceName” )
specifying a relation between two variant services, independent from the
variation points the variants are associated with, in which the selection of
one variant service require the selection of the other, and

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 173



6 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

– Excludes dependency (XML tag:dependency:Excludes = “serviceName” )
which is the opposite of the requires dependency specifying the exclusion of
a variant when another one is selected.

As we can see, we define a simplified set of dependencies to model variability
aspects. Thus, for example, we only represent requires and excludes dependencies
between variants (and not between variation points [12]). This decision is based
on the fact that these variability constraints are more used in practice and can be
defined as simple assertions rules [17]. Then, in order to create the XML-based
representation, we define three types of XML documents. The first one, named
service interactions is generated to represent the graphical service interactions
defined in a datasheet according to an UML metamodel.

The second type of XML documents is the service information containing the
service id, the textual description, and the name of the architectural component
in which it is included. Then, for each service involved in a service interaction
XML file, a link to the service information XML file must be included. Finally,
the third type of XML documents is the variability constraint which describes
the variability constraints imposed to the services. Thus, for each required func-
tionality of the domain, one template is completed by generating the functional
datasheets with a set of XML files.

3.2 Organizational Analysis

The organizational analysis, as presented in [1], involves a set of five activi-
ties aimed at defining the specific organizational boundaries, and commonality
and variability services. This analysis performs a refinement of the artifact de-
veloped during the domain analysis in which the context of the SPL must be
specially considered. In order to illustrate the process, at the bottom of Figure
1 we show the five activities together with the organizational artifacts used and
developed. As we can see, the functional datasheets and software components
must be refined in order to begin enclosing the SPL to the specific applications
to be derived. The XML files, with the service interactions and variability de-
pendencies are reanalyzed resulting in a modified set of functional datasheets.
Following, the refined functional datasheets and the software component struc-
ture are used to determine the final set of reusable components which conform
the platform of the SPL. This structure is designed and expressed in detail, in
a platform architecture. The architecture contains the information of the way
each functional datasheet is implemented as software components considering
also the quality requirements of the SPL. In addition, as our SPL methodology
is assuming a component-based approach, in this activity we add one more item
to the datasheets, a list of possible open source tools which could implement the
functionality.

The next activity, platform implementation (PI), must codify the platform
architecture according to the reused components and architectural requirements.
As we propose a component-based approach, the first task is to analyze which

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 174



Taxonomy-based Annotations for Variability Management 7

components (grouping one or a set of services) will be implemented for exter-
nal tools, and which of them must be fully implemented by using a determined
underlying technology. In particular, the list of open source tools proposed for
implementing each functional datasheet (defined during the reuse and boundary
analysis (RBA) activity) must provide an initial idea of the specific software
tools to be used. In addition, the quality requirements of the architecture and
the component structure defined will determine the set of tools (programming
languages, software platform, component models, etc.) that can implement the
constraints. Finally, the last activity of the SPL methodology is focused on test-
ing activities of the platform implementation, leaving the product development,
and management of the overall product line validations for other activities in-
volved in the product derivation phase of the SPL5.

Dependence Representation on Software Components

In the organizational requirements (OR) activity, we define a common struc-
ture of metadata that each component should implement. In a previous work
[13], we specified a variability metamodel based on an annotation system to
manage some variability problems during codification. Here, we adapt this model
by adding the correspondences among services included in the datasheets and
components. Thus, previous to the platform implementation, each component
is created with a set of annotations which follow the UML metamodel defined
to represent the service interactions. For each component, we can annotate the
common services involved, by means of the Meta use annotation; and the vari-
ant services, by means of the group annotations of the Meta VariationPoint.
Each annotation has a 1-1 correspondence to the tags defined in the XML
files of the functional datasheets. Finally, the annotation system allows de-
velopers to define internal variants (Meta DeltaInternal) implemented as part
of the same component in which the variation point is included. In our ap-
proach, we are only using the external variants in which each variant is imple-
mented as a different component. However, the annotation system allows devel-
opers to refine the component structure to implement internal variants within
the same component. Finally, Meta Deltas annotation stores the information
of the variability constraints within the REQUIRES(dependency:Requires) and
EXCLUDES(dependency:Excludes) sets. Implementation aspects of the variabil-
ity metamodel and the annotation system included on the components are de-
scribed in the next section.

All these artifacts have two purposes (i) assisting in the variability man-
agement and the development of the SPL by providing a common vocabulary
and interface for communication among stakeholders; and (ii) at the same time,
by starting from service taxonomy, each artifact is produced by including well-
formed information of the previous one in order to track the way the variability
is elicited and implemented.

5http://www.sei.cmu.edu/productlines/frame_report/meas_tracking.htm.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 175



8 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

4 Applying the model in a case study

The methodology presented here was applied to the development of new compo-
nents over an SPL previously implemented. This SPL was developed by following
our level-domain view within the geographic domain. There, we designed and
implemented a set of open source components, each of one providing a set of
services according to the domain in which they are included. The involved do-
mains were the geographic, the oceanographic and the marine ecology. During
the first stages of the SPL development, we defined a service taxonomy by spe-
cializing categorized [2] services by the Service Architecture and the ISO/DIS
19119 stds. The main objective of this taxonomy was to allow stakeholders to
design functionalities of the SPL and products under a controlled range of ser-
vice combinations restricting the universe of possibilities. At the same time, we
defined a three level architecture with a clear and independent functionality di-
vision. It contains a human interaction layer, responsible for the interaction with
the user; a user processing layer, responsible for the functionality required by the
user; and a model/information management layer, responsible for physical data
storage and data management. Each service defined in our service taxonomy,
belongs to a specific architectural layer and a particular domain.

As an example of the application of the extended methodology, we illus-
trate a simple functionality of the platform for querying zone attributes. This
functionality was designed as a functional datasheet modeling the service’s uses
and interactions within the three-layer architecture and it is part of the marine
ecology domain. The left side of Figure 2 shows the graphical notation of the
querying zone attributes datasheet and the list of the XML files created here. As
we can see, the functionality is implemented by using nine services of the service
taxonomy in which there are two Variant VP, PS-T2.5.1 (query the description
of zones) and PS-T2.5.2 (query the code of zones). For example, the PS-T2.5.1
Variant VP can show the description attribute as a table (HI-LM1.3) or as a
label (HI-LM1.20) or both. At the same time, the functionality needs the ser-
vices HI-LM.5.1.2 (show zones by poligons) and MMS-FA1.1 (search zones) for
searching the zones’ attributes in the geographic database. Finally, two requires
constraints are included in order to determine that if a zone code is showed by a
table, the description must be also showed in the same way (HI-LM1.2 requires
HI-LM1.3). The functionality involves eleven XML files, nine for service infor-
mation, one for the service interactions, and an addition of the constraints in
the variability constraint XML file.

On the right side of Figure 2 we show the software component structure for
implementing the functional datasheet. As we can see, we define seven compo-
nents which include a set of common and variant services. As we aforementioned,
each variant service is implemented on a different component and the common
services can be on the same one, as long as the services belong to the same archi-
tectural layer. Taking this into account, the PS-T2.5, PS-T2.5.1, and PS-T2.5.2
are implemented inside a same component, and the MMS-FA1.1 service is part
of another one.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 176



Taxonomy-based Annotations for Variability Management 9

Fig. 2. Some of the software artifacts designed to represent variabilities and their
dependencies

As the previous SPL was developed in Java 1.6+, we apply the particulari-
ties of this language for implementing our annotation system. Thus, we use two
different programming resources. The first one is Java Annotations6 which al-
lows developers to add metadata to java source code. An at-sign (@) precedes
an annotation keyword which is used to store information about some partic-
ular aspect. In our case, we use this resource for implementing our variability
metamodel.

The second resource is to use some of the main characteristics of Delta-
Oriented Programming (DOP) for SPL development. This approach allows the
SPL to be represented as a core module and a set of delta modules. The first one
defines a common platform for all derived products, and the seconds (the deltas)
specify additions, modifications, and/or deletions of code included in the core
module in order to bind a specific variability. In our SPL, the use of DOP allows
us to implement internal and/or external variants according to the developer’s
decisions. In the example of Figure 2, we follow an external variant approach in
which each variant service is implemented on a different software component.

Then, during the implementation of the components, each variation point is
specified as a dummy method which determines the point for binding a variability.
This implementation is chosen because in Java 1.6+ we can only annotate classes
and methods.

In order to evaluate the extended methodology, we performed a preliminary
analysis by applying two main cost factors of the SIMPLE [3] model, Ccab (cost
to build reusable components) and Creuse (cost of reusing reusable components).
Both factors were adapted taking into account the previous evaluation performed
in [1]. In that work, we had analyzed two aspects of the SPL, the effort required
to develop the reusable components and time required for the construction of
products including percentage of bugs found in reusable and specific components.

6Oracle Corporation. http://docs.oracle.com/javase/tutorial/java/

annotations/

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 177



10 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

Thus, in this work, we apply these factors in order to analyze the effort (in
time-terms) of writing or reusing components using the new methodology in
comparison to the previous one. Specifically, for the Ccab evaluation, we mea-
sure, within each of the eight activities of our methodology (Figure 1), the time
required for modifying, extending or using the software artifacts towards the
development of new common functionalities. This analysis measures the devel-
opment of five new functionalities by considering the hours required to perform
each of them. Each of these functionalities has been developed by five different
developers who have applied the methodology for two functionalities each one;
one for the previous SPL and the other for the new one. An average of the hours
required by the developers is showed in Figure 3 for the five functionalities. As we
can see, we have obtained a slight improvement as compared with the previous
SPL which will be increased when more functionalities are being developed.

Fig. 3. Average of hours required by applying the previous and new SPL methodology

Then, for the Creuse evaluation, we analyzed the cost of locating the right
reusable components (looking for them into some software artifacts) and the cost
of instantiating (adding, deleting, or modifying code within the components)
specific variabilities included in the products. For these measures, we extended
a prototype tool, implemented for assisting some tasks of the derivation process
[13], in order to extract information of the software components. The information
is used then for the developers for instantiating the dummy methods according
to the variability designed. The use of this tool generated also improvements on
the time required for the new SPL methodology.

5 Conclusion

In this article we have presented an extension of our SPL methodology [1] based
on level-domain views. The proposed methodology is distinctive in three main

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 178



Taxonomy-based Annotations for Variability Management 11

respects. First, it proposes the use of semantic resources, such as a domain ser-
vice taxonomy which stands the bases for defining functional datasheets used
to specify service interactions. Second, it provides variability metamodels which
are adapted depending on the activity in which the engineers or developers are
working on. During the domain analysis, a variability metamodel must be used
by specifying the common and variant services included in the SPL. This meta-
model is translated to a set of XML files which can be machine-readable. Then,
during the organizational analysis, this variability metamodel is implemented
as a annotation system which will assist the process of variability. And finally,
we pave the way towards automatic supporting tools for assisting the develop-
ment of the software artifacts on each activity. In addition, the paper presents
a real case study in which we have implemented new components by applying
the extended methodology. Here, we have showed the saving obtained during the
component development.

As future work, we are implementing supporting tools for assisting some
artifact generations and evaluating different alternatives for improving the com-
munication of stakeholders during the domain and product derivation phase.

Acknowledgment

We would like to thank the two organizations that are collaborating in this
proyect: IBMPAS and CENPAT-CONICET. This work is partially supported
by the UNComa project (04/F001) “Reuso de Software orientado a Dominios”
part of the program “Desarrollo de Software Basado en Reuso”.

References

1. Buccella, A., Cechich, A., Arias, M., Pol’la, M., Doldan, S., Morsan, E.: Towards
systematic software reuse of gis: Insights from a case study. Computers & Geo-
sciences 54(0), 9 – 20 (2013), http://www.sciencedirect.com/science/article/
pii/S0098300412003913

2. Buccella, A., Cechich, A., Pol’la, M., Arias, M., Doldan, S., Morsan, E.: Marine
ecology service reuse through taxonomy-oriented SPL development. Computers &
Geosciences 73(0), 108 – 121 (2014), http://www.sciencedirect.com/science/
article/pii/S0098300414002155

3. Clements, P.C., McGregor, J., Cohen, S.: The structured intuitive model for prod-
uct line economics (simple). Tech. Rep. CMU/SEI-2005-TR-003, Software Engi-
neering Institute (2005)

4. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wäsowski, A.: Cool fea-
tures and tough decisions: a comparison of variability modeling approaches. In: Pro-
ceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems. pp. 173–182. VaMoS ’12, ACM, New York, NY, USA (2012)

5. Fenske, W., Thüm, T., Saake, G.: A taxonomy of software product line reengineer-
ing. In: Proceedings of the Eighth International Workshop on Variability Modelling
of Software-Intensive Systems. pp. 4:1–4:8. VaMoS ’14, ACM, New York, NY, USA
(2013), http://doi.acm.org/10.1145/2556624.2556643

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 179



12 Agustina Buccella, Maximiliano Arias, Matias Pol’la, and Alejandra Cechich

6. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA (2004)

7. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
variability modeling for software architectures. In: Software Product Lines - 15th
International Conference. pp. 150–159 (2011)

8. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University Pittsburgh, PA. (1990)

9. Kang, K., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: FORM: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software En-
gineering 5, 143–168 (1998)

10. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in
source code. In: In Proc. SPLC Workshop on Visualization in Software Product
Line Engineering (ViSPLE (2008)

11. Krueger, C.W., Clements, P.: Systems and software product line engineering with
biglever software gears. In: Proceedings of the 16th International Software Product
Line Conference - Volume 2. pp. 256–259. SPLC ’12, ACM, New York, NY, USA
(2012), http://doi.acm.org/10.1145/2364412.2364458

12. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2005)

13. Pol’la, M., Buccella, A., Cechich, A., Arias, M.: Un modelo de metadatos para la
gestión de la variabilidad en ĺıneas de productos de software. In: Proceedings of
the ASSE’14: 15th Simposio Argentino de Ingenieŕıa de Software. Buenos Aires,
Argentina (2014)

14. Reinhartz-Berger, I., Itzik, N., Wand, Y.: Analyzing variability of software prod-
uct lines using semantic and ontological considerations. In: Advanced Informa-
tion Systems Engineering, Lecture Notes in Computer Science, vol. 8484, pp.
150–164. Springer International Publishing (2014), http://dx.doi.org/10.1007/
978-3-319-07881-6_11

15. Rosa, M.L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.:
Questionnaire-based variability modeling for system configuration. Software and
System Modeling 8(2), 251–274 (2009)

16. Rumpe, B., Robert, F.: Variability in uml language and semantics. Software and
Systems Modeling 10(4), 439–440 (2011)

17. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Covamof: A framework for mod-
eling variability in software product families. In: Third International Conference
of SPLC. LNCS, vol. 3154, pp. 197–213. Springer (2004)

18. Siy, H., Wolfson, A., Zand, M.: Ontology-based product line modeling and gen-
eration. In: Proceedings of the 2nd International Workshop on Product Line Ap-
proaches in Software Engineering. pp. 50–54. PLEASE ’11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/1985484.1985497

19. Ziadi, T., Jézéquel, J.: Software product line engineering with the uml: Deriving
products. In: Software Product Lines, pp. 557–588 (2006)

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 180


